Bibliography

[1] F. Abramovich, Y. Benjamini, D. L. Donoho, I. M. Johnstone. Adapting to unknown sparsity by controlling the false discovery rate. 34:584–653,
[2] G. Adelfio, F. P. Schoenberg. Point process diagnostics based on weighted second-order statistics and their asymptotic properties. 61:929–948,
[3] H. Akaike. Information Theory and an Extension of the Maximum Likelihood Principle. Proceeding of the Second International Symposium on Information Theory, 199–213,
[4] C. Anderson. The Long Tail. 12:
[5] S. Azizpour, K. Giesecke, others. Self-exciting corporate defaults: contagion vs. frailty.
[6] E. Bacry, K. Dayri, J. F. Muzy. Non-parametric kernel estimation for symmetric Hawkes processes. Application to high frequency financial data. 85:1–12,
[7] E. Bacry, S. Delattre, M. Hoffmann, J. F. Muzy. Scaling limits for Hawkes processes and application to financial statistics.
[8] E. Bacry, J.-F. Muzy. Second order statistics characterization of Hawkes processes and non-parametric estimation.
[9] E. Bacry, J.-F. Muzy. Hawkes model for price and trades high-frequency dynamics. 14:1147–1166,
[10] A. Baddeley, R. Turner. Spatstat: an R package for analyzing spatial point patterns. 12:1–42,
[11] R. Battiti. First-and second-order methods for learning: between steepest descent and Newton's method. 4:141–166,
[12] Y. Benjamini. Simultaneous and selective inference: Current successes and future challenges. 52:708–721,
[13] Y. Benjamini, Y. Hochberg. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. 57:289–300,
[14] Y. Benjamini, D. Yekutieli. False Discovery Rate–Adjusted Multiple Confidence Intervals for Selected Parameters. 100:71–81,
[15] J. S. Bergstra, R. Bardenet, Y. Bengio, B. Kégl. Algorithms for hyper-parameter optimization. Advances in Neural Information Processing Systems, 2546–2554,
[16] M. Berman, P. Diggle. Estimating Weighted Integrals of the Second-Order Intensity of a Spatial Point Process. 51:81–92,
[17] R. M. Bond, C. J. Fariss, J. J. Jones, A. D. I. Kramer, C. Marlow, J. E. Settle, J. H. Fowler. A 61-million-person experiment in social influence and political mobilization. 489:295–298,
[18] E. Brown, R. Barbieri, V. Ventura, R. Kass, L. Frank. The time-rescaling theorem and its application to neural spike train data analysis. 14:325–346,
[19] P. Brémaud, L. Massoulié. Power spectra of general shot noises and Hawkes point processes with a random excitation. 34:205–222,
[20] K. P. Burnham, D. R. Anderson. Multimodel Inference Understanding AIC and BIC in Model Selection. 33:261–304,
[21] P. Bühlmann. Bootstraps for Time Series. 17:52–72,
[22] P. Bühlmann, S. van de Geer. High-dimensional inference in misspecified linear models.
[23] E. J. Candès, J. K. Romberg, T. Tao. Stable signal recovery from incomplete and inaccurate measurements. 59:1207–1223,
[24] J. E. Cavanaugh. Unifying the derivations for the Akaike and corrected Akaike information criteria. 33:201–208,
[25] G. Celeux, D. Chauveau, J. Diebolt. On Stochastic Versions of the EM Algorithm.
[26] G. Claeskens. Model selection and model averaging.
[27] P. Coles, B. Jones. A lognormal model for the cosmological mass distribution. 248:1–13,
[28] D. R. Cox. Some Statistical Methods Connected with Series of Events. 17:129–164,
[29] D. R. Cox. On the Estimation of the Intensity Function of a Stationary Point Process. 27:332–337,
[30] D. R. Cox, C. Kartsonaki. The fitting of complex parametric models. 99:741–747,
[31] R. Crane, F. Schweitzer, D. Sornette. Power law signature of media exposure in human response waiting time distributions. 81:056101,
[32] R. Crane, D. Sornette. Robust dynamic classes revealed by measuring the response function of a social system. 105:15649–15653,
[33] L. Cucala. Intensity Estimation for Spatial Point Processes Observed with Noise. 35:322–334,
[34] D. J. Daley, D. Vere-Jones. An introduction to the theory of point processes. 1. Elementary theory and methods:
[35] D. J. Daley, D. Vere-Jones. An introduction to the theory of point processes. 2. General theory and structure:
[36] A. Dassios, H. Zhao. A dynamic contagion process. 43:814–846,
[37] B. Delyon, M. Lavielle, E. Moulines. Convergence of a stochastic approximation version of the EM algorithm. 27:94–128,
[38] A. P. Dempster, N. M. Laird, D. B. Rubin. Maximum Likelihood from Incomplete Data via the EM Algorithm. 39:1–38,
[39] F. Deschâtres, D. Sornette. Dynamics of book sales: Endogenous versus exogenous shocks in complex networks. 72:016112,
[40] P. Diggle. A Kernel Method for Smoothing Point Process Data. 34:138–147,
[41] D.L. Donoho. Compressed sensing. 52:1289–1306,
[42] B. Efron. How biased is the apparent error rate of a prediction rule?. 81:461–470,
[43] B. Efron. The Estimation of Prediction Error. 99:619–632,
[44] B. Efron, T. Hastie, I. Johnstone, R. Tibshirani. Least angle regression. 32:407–499,
[45] V. Filimonov, D. Bicchetti, N. Maystre, D. Sornette. Quantification of the high level of endogeneity and of structural regime shifts in commodity markets. 42:174–192,
[46] V. Filimonov, D. Sornette. Apparent criticality and calibration issues in the Hawkes self-excited point process model: application to high-frequency financial data.
[47] V. Filimonov, S. Wheatley, D. Sornette. Effective measure of endogeneity for the Autoregressive Conditional Duration point processes via mapping to the self-excited Hawkes process. 22:23–37,
[48] J. Friedman, T. Hastie, R. Tibshirani. Regularization Paths for Generalized Linear Models via Coordinate Descent. 33:1–22,
[49] C. Genovese, L. Wasserman. Adaptive confidence bands. 36:875–905,
[50] M. C. Gerstenberger, S. Wiemer, L. M. Jones, P. A. Reasenberg. Real-time forecasts of tomorrow's earthquakes in California. 435:328–331,
[51] K. Giesecke, H. Kakavand, M. Mousavi. Exact Simulation of Point Processes with Stochastic Intensities. 59:1233–1245,
[52] P. J. Green. Penalized Likelihood for General Semi-Parametric Regression Models. 55:245–259,
[53] G. Grinstein, R. Linsker. Power-law and exponential tails in a stochastic priority-based model queue. 77:012101,
[54] J. Gui, H. Li. Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data. 21:3001–3008,
[55] P. F. Halpin. An EM algorithm for Hawkes process. 2:
[56] A.-u. Haque, P. Ginsparg. Last but not least: Additional positional effects on citation and readership in arXiv. 61:2381–2388,
[57] S. J. Hardiman, N. Bercot, J.-P. Bouchaud. Critical reflexivity in financial markets: a Hawkes process analysis. 86:1–9,
[58] S. J. Hardiman, J.-P. Bouchaud. Branching-ratio approximation for the self-exciting Hawkes process. 90:062807,
[59] A. G. Hawkes. Point spectra of some mutually exciting point processes. 33:438–443,
[60] A. G. Hawkes, D. Oakes. A cluster process representation of a self-exciting process. 11:493,
[61] A. Helmstetter, D. Sornette, J.-R. Grasso. Mainshocks are aftershocks of conditional foreshocks: How do foreshock statistical properties emerge from aftershock laws. 108:2046,
[62] A. Helmstetter, M. J. Werner. Adaptive Smoothing of Seismicity in Time, Space, and Magnitude for Time-Dependent Earthquake Forecasts for California. 104:809–822,
[63] A. E. Hoerl, R. W. Kennard. Ridge Regression: Biased Estimation for Nonorthogonal Problems. 12:55–67,
[64] C. M. Hurvich, C.-L. Tsai. Regression and time series model selection in small samples. 76:297–307,
[65] R. Iyengar, C. Van den Bulte, T. W. Valente. Opinion leadership and social contagion in new product diffusion. 30:195–212,
[66] W. Jiang, B. Turnbull. The Indirect Method: Inference Based on Intermediate Statistics—A Synthesis and Examples. 19:239–263,
[67] S. Kaufman, S. Rosset. When does more regularization imply fewer degrees of freedom? Sufficient conditions and counterexamples. 101:771–784,
[68] B. E. Kendall, S. P. Ellner, E. McCauley, S. N. Wood, C. J. Briggs, W. W. Murdoch, P. Turchin. Population cycles in the pine looper moth: Dynamical tests of mechanistic hypotheses. 75:259–276,
[69] S. Konishi, G. Kitagawa. Generalised information criteria in model selection. 83:875–890,
[70] E. Kuhn, M. Lavielle. Coupling a stochastic approximation version of EM with an MCMC procedure. 8:115–131,
[71] H. R. Künsch. The Jackknife and the Bootstrap for General Stationary Observations. 17:1217–1241,
[72] S. N. Lahiri. On the moving block bootstrap under long range dependence. 18:405–413,
[73] S. N. Lahiri. Effects of block lengths on the validity of block resampling methods. 121:73–97,
[74] M.-C. N. M. v. Lieshout. On Estimation of the Intensity Function of a Point Process. 14:567–578,
[75] R. Lockhart, J. Taylor, R. J. Tibshirani, R. Tibshirani. A significance test for the lasso. 42:413–468,
[76] J. S. Martin, A. Jasra, E. McCoy. Inference for a class of partially observed point process models. 65:413–437,
[77] W. A. Massey, G. A. Parker, W. Whitt. Estimating the parameters of a nonhomogeneous Poisson process with linear rate. 5:361–388,
[78] N. Meinshausen. Relaxed Lasso. 52:374–393,
[79] N. Meinshausen, P. Bühlmann. Stability selection. 72:417–473,
[80] N. Meinshausen, L. Meier, P. Bühlmann. p-Values for High-Dimensional Regression. 104:1671–1681,
[81] N. Meinshausen, B. Yu. Lasso-type recovery of sparse representations for high-dimensional data. 37:246–270,
[82] G. O. Mohler, M. B. Short, P. J. Brantingham, F. P. Schoenberg, G. E. Tita. Self-exciting point process modeling of crime. 106:100–108,
[83] J. Møller. Shot noise Cox processes. 35:614–640,
[84] J. Møller, A. R. Syversveen, R. P. Waagepetersen. Log Gaussian Cox Processes. 25:451–482,
[85] R. Nickl, S. van de Geer. Confidence sets in sparse regression. 41:2852–2876,
[86] D. Oakes. The Markovian self-exciting process. 12:69,
[87] Y. Ogata. The asymptotic behaviour of maximum likelihood estimators for stationary point processes. 30:243–261,
[88] Y. Ogata. Statistical models for earthquake occurrences and residual analysis for point processes. 83:9–27,
[89] Y. Ogata, H. Akaike. On linear intensity models for mixed doubly stochastic Poisson and self-exciting point processes. 44:269–274,
[90] Y. Ogata, R. S. Matsu'ura, K. Katsura. Fast likelihood computation of epidemic type aftershock-sequence model. 20:2143–2146,
[91] A. Oreskovic. Exclusive: YouTube hits 4 billion daily video views.
[92] T. Ozaki. Maximum likelihood estimation of Hawkes' self-exciting point processes. 31:145–155,
[93] M. Rambaldi, P. Pennesi, F. Lillo. Modeling FX market activity around macroeconomic news: a Hawkes process approach. 91:012819,
[94] J. G. Rasmussen. Bayesian inference for Hawkes processes. 15:623–642,
[95] REUTERS. YouTube serves up 100 million videos a day online.
[96] M. Roig-Franzia. Mexican Drug Cartels Leave a Bloody Trail on YouTube.
[97] I. Rubin. Regular point processes and their detection. 18:547–557,
[98] A. Saichev, D. Sornette. Hierarchy of temporal responses of multivariate self-excited epidemic processes.
[99] F. P. Schoenberg. Consistent parametric estimation of the intensity of a spatial–temporal point process. 128:79–93,
[100] F. P. Schoenberg, A. Chu, A. Veen. On the relationship between lower magnitude thresholds and bias in epidemic-type aftershock sequence parameter estimates. 115:B04309,
[101] L. Shaffer. The dress that broke the Internet 16 million views in 6 hours..
[102] B. W. Silverman. On the Estimation of a Probability Density Function by the Maximum Penalized Likelihood Method. 10:795–810,
[103] A. Smith, E. Brown. Estimating a state-space model from point process observations. 15:965–991,
[104] D. Sornette, Y. Malevergne, J. F. Muzy. Volatility fingerprints of large shocks: Endogeneous versus exogeneous.
[105] D. Sornette, S. Utkin. Limits of declustering methods for disentangling exogenous from endogenous events in time series with foreshocks, main shocks, and aftershocks. 79:061110,
[106] D. Sornette, A. Helmstetter. Endogenous versus exogenous shocks in systems with memory. 318:577–591,
[107] D. Sornette. Endogenous versus exogenous origins of crises. Extreme events in nature and society, 95–119,
[108] D. Sornette, F. Deschâtres, T. Gilbert, Y. Ageon. Endogenous versus exogenous shocks in complex networks: An empirical test using book sale rankings. 93:228701,
[109] N. Sugiura. Further analysts of the data by Akaike' s Information Criterion and the finite corrections. 7:13–26,
[110] R. Tibshirani. Regression Shrinkage and Selection via the Lasso. 58:267–288,
[111] A. N. Tikhonov, V. B. Glasko. Use of the regularization method in non-linear problems. 5:93–107,
[112] T. Utsu. Aftershocks and earthquake statistics (1): Some parameters which characterize an aftershock sequence and their interrelations. 3:129–195,
[113] A. P. Vacarescu. Filtering and parameter estimation for partially observed generalized Hawkes processes.
[114] S. van de Geer, P. Bühlmann, Ya'acov Ritov, R. Dezeure. On asymptotically optimal confidence regions and tests for high-dimensional models. 42:1166–1202,
[115] S. van de Geer, J. Lederer. The Lasso, correlated design, and improved oracle inequalities.
[116] A. Veen, F. P. Schoenberg. Estimation of Space–Time Branching Process Models in Seismology Using an EM–Type Algorithm. 103:614–624,
[117] L. Wasserman, K. Roeder. High-dimensional variable selection. 37:2178–2201,
[118] G. C. G. Wei, M. A. Tanner. A Monte Carlo Implementation of the EM Algorithm and the Poor Man's Data Augmentation Algorithms. 85:699–704,
[119] M. J. Werner, A. Helmstetter, D. Jackson, Y. Y. Kagan, S. Wiemer. Adaptively smoothed seismicity earthquake forecasts for Italy.
[120] B. Whitelaw. Almost all YouTube views come from just 30\%of films.
[121] C. F. J. Wu. On the Convergence Properties of the EM Algorithm. 11:95–103,
[122] Youtube. We never thought a video would be watched in numbers greater than a 32-bit integer.
[123] C.-H. Zhang, S. S. Zhang. Confidence intervals for low dimensional parameters in high dimensional linear models. 76:217–242,
[124] L. Zhu. Moderate deviations for Hawkes processes. 83:885–890,
[125] H. Zou, T. Hastie, R. Tibshirani. On the “degrees of freedom” of the lasso. 35:2173–2192,