# Limit Theorems

## Asymptotic distributions of random processes

Many things are similar in the eventual limit.

We use asymptotic approximations all the time in statistics, most frequently in asymptotic pivots that motivate classical tests e.g. in classical hypothesis tests or an information penalty. We use the asymptotic delta method to motivate robust statistics, or infinite neural networks. There are various specialised mechanism; I am fond of the Stein methods. Also fun, Feynman-Kac formulae give us central limit theorems for all manner of weird processes.

There is much to be said on the various central limit theorems, but I will not be the one to say it right this minute, because this is a placeholder.

## References

Akaike, Hirotogu. 1973. “Information Theory and an Extension of the Maximum Likelihood Principle.” In Proceeding of the Second International Symposium on Information Theory, edited by Petrovand F Caski, 199–213. Budapest: Akademiai Kiado. http://link.springer.com/chapter/10.1007/978-1-4612-1694-0_15.
Akaike, Htrotugu. 1973. “Maximum Likelihood Identification of Gaussian Autoregressive Moving Average Models.” Biometrika 60 (2): 255–65. https://doi.org/10.1093/biomet/60.2.255.
Athreya, Krishna B, and S. N Lahiri. 2006. Measure Theory and Probability Theory. New York: Springer. http://link.springer.com/chapter/10.1007/978-0-387-35434-7_19.
Bacry, E., S. Delattre, M. Hoffmann, and J. F. Muzy. 2013. “Some Limit Theorems for Hawkes Processes and Application to Financial Statistics.” Stochastic Processes and Their Applications, A Special issue on the Occasion of the 2013 International Year of Statistics, 123 (7): 2475–99. https://doi.org/10.1016/j.spa.2013.04.007.
Barbour, A. D., and Louis H. Y. Chen, eds. 2005. An Introduction to Stein’s Method. Vol. 4. Lecture Notes Series / Institute for Mathematical Sciences, National University of Singapore, v. 4. Singapore : Hackensack, N.J: Singapore University Press ; World Scientific. https://doi.org/10.1142/5792.
Barrio, Eustasio del, Paul Deheuvels, and Sara van de Geer. 2006. Lectures on Empirical Processes: Theory and Statistical Applications. European Mathematical Society.
Barron, Andrew R. 1986. “Entropy and the Central Limit Theorem.” The Annals of Probability 14 (1): -336-342. https://doi.org/10.1214/aop/1176992632.
Bréhier, Charles-Edouard, Ludovic Goudenège, and Loïc Tudela. 2016. “Central Limit Theorem for Adaptive Multilevel Splitting Estimators in an Idealized Setting.” In Monte Carlo and Quasi-Monte Carlo Methods, edited by Ronald Cools and Dirk Nuyens, 163:245–60. Springer Proceedings in Mathematics & Statistics. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-33507-0_10.
Cantoni, Eva, and Elvezio Ronchetti. 2001. “Robust Inference for Generalized Linear Models.” Journal of the American Statistical Association 96 (455): 1022–30. https://doi.org/10.1198/016214501753209004.
Claeskens, Gerda, Tatyana Krivobokova, and Jean D. Opsomer. 2009. “Asymptotic Properties of Penalized Spline Estimators.” Biometrika 96 (3): 529–44. https://doi.org/10.1093/biomet/asp035.
DasGupta, Anirban. 2008. Asymptotic Theory of Statistics and Probability. Springer Texts in Statistics. New York: Springer New York. http://link.springer.com/10.1007/978-0-387-75971-5.
Del Moral, P., A. Kurtzmann, and J. Tugaut. 2017. “On the Stability and the Uniform Propagation of Chaos of a Class of Extended Ensemble KalmanBucy Filters.” SIAM Journal on Control and Optimization 55 (1): 119–55. https://doi.org/10.1137/16M1087497.
Duembgen, Moritz, and Mark Podolskij. 2015. “High-Frequency Asymptotics for Path-Dependent Functionals of Itô Semimartingales.” Stochastic Processes and Their Applications 125 (4): 1195–1217. https://doi.org/10.1016/j.spa.2014.08.007.
Feller, William. 1951. “The Asymptotic Distribution of the Range of Sums of Independent Random Variables.” The Annals of Mathematical Statistics 22 (3): -427-432. http://www.jstor.org/stable/2236629.
Fernholz, Luisa Turrin. 1983. Von Mises Calculus for Statistical Functionals. Lecture Notes in Statistics 19. New York: Springer.
Gine, Evarist, and Joel Zinn. 1990. “Bootstrapping General Empirical Measures.” Annals of Probability 18 (2): 851–69. https://doi.org/10.1214/aop/1176990862.
Giraitis, L, and D Surgailis. 1999. “Central Limit Theorem for the Empirical Process of a Linear Sequence with Long Memory.” Journal of Statistical Planning and Inference 80 (1-2): 81–93.
Huber, Peter J. 1964. “Robust Estimation of a Location Parameter.” The Annals of Mathematical Statistics 35 (1): 73–101. https://doi.org/10.1214/aoms/1177703732.
Jacob, Pierre E., John O’Leary, and Yves F. Atchadé. 2017. “Unbiased Markov Chain Monte Carlo with Couplings.” August 11, 2017. http://arxiv.org/abs/1708.03625.
Jacod, Jean, Mark Podolskij, and Mathias Vetter. 2010. “Limit Theorems for Moving Averages of Discretized Processes Plus Noise.” The Annals of Statistics 38 (3): 1478–1545. https://doi.org/10.1214/09-AOS756.
Jacod, Jean, and Albert N. Shiryaev. 1987a. Limit Theorems for Stochastic Processes. Vol. 288. Grundlehren Der Mathematischen Wissenschaften. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-02514-7.
———. 1987b. “The General Theory of Stochastic Processes, Semimartingales and Stochastic Integrals.” In Limit Theorems for Stochastic Processes, edited by Jean Jacod and Albert N. Shiryaev, 1–63. Grundlehren Der Mathematischen Wissenschaften. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-02514-7_1.
Janková, Jana, and Sara van de Geer. 2016. “Confidence Regions for High-Dimensional Generalized Linear Models Under Sparsity.” October 5, 2016. http://arxiv.org/abs/1610.01353.
Karabash, Dmytro, and Lingjiong Zhu. 2012. “Limit Theorems for Marked Hawkes Processes with Application to a Risk Model.” November 16, 2012. http://arxiv.org/abs/1211.4039.
Le Gland, François, Valerie Monbet, and Vu-Duc Tran. 2009. “Large Sample Asymptotics for the Ensemble Kalman Filter,” 25. https://hal.inria.fr/inria-00409060/document.
Maronna, Ricardo Antonio. 1976. “Robust M-Estimators of Multivariate Location and Scatter.” The Annals of Statistics 4 (1): 51–67. http://ssg.mit.edu/group/ajkim/area_exam/papers/Maronna_1976.pdf.gz.
Mueller, Ulrich K. 2018. “Refining the Central Limit Theorem Approximation via Extreme Value Theory.” February 2, 2018. http://arxiv.org/abs/1802.00762.
Pollard, David. 1990. Empirical Processes: Theory and Applications. IMS.
Prause, Annabel, and Ansgar Steland. 2018. “Estimation of the Asymptotic Variance of Univariate and Multivariate Random Fields and Statistical Inference.” Electronic Journal of Statistics 12 (1): 890–940. https://doi.org/10.1214/18-EJS1398.
Raginsky, Maxim, and Igal Sason. 2014. Concentration of Measure Inequalities in Information Theory, Communications, and Coding: Second Edition. Now Publishers.
Ross, Nathan. 2011. “Fundamentals of Stein’s Method.” Probability Surveys 8 (0): 210–93. https://doi.org/10.1214/11-PS182.
Scornet, Erwan. 2014. “On the Asymptotics of Random Forests.” September 7, 2014. http://arxiv.org/abs/1409.2090.
Shiga, Tokuzo, and Hiroshi Tanaka. 1985. “Central Limit Theorem for a System of Markovian Particles with Mean Field Interactions.” Zeitschrift für Wahrscheinlichkeitstheorie Und Verwandte Gebiete 69 (3): 439–59. https://doi.org/10.1007/BF00532743.
Stam, A. J. 1982. “Limit Theorems for Uniform Distributions on Spheres in High-Dimensional Euclidean Spaces.” Journal of Applied Probability 19 (1): 221–28. https://doi.org/10.2307/3213932.
Stein, Charles. 1986. Approximate Computation of Expectations. Vol. 7. IMS. http://www.jstor.org/stable/4355512.
Vaart, Aad W. van der. 2007. Asymptotic Statistics. 1. paperback ed., 8. printing. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge: Cambridge Univ. Press.

### No comments yet. Why not leave one?

GitHub-flavored Markdown & a sane subset of HTML is supported.