Probably Approximately Correct

A class of risk bounds, related in some way to concentration inequalities of statistical learning.

🏗 What is that way precisely?

Jeremy Kun explains:

Some historical notes: PAC learning was invented by Leslie Valiant in 1984, and it birthed a new subfield of computer science called computational learning theory and won Valiant some of computer science’s highest awards. Since then there have been numerous modifications of PAC learning, and also models that are entirely different from PAC learning. One other goal of learning theorists (as with computational complexity researchers) is to compare the power of different learning models.