Abrahamsen, P., V. Kvernelv, and D. Barker. 2018.
βSimulation Of Gaussian Random Fields Using The Fast Fourier Transform (Fft).β In, 2018:1β14. European Association of Geoscientists & Engineers.
Alexanderian, Alen. 2015.
βA Brief Note on the Karhunen-LoΓ¨ve Expansion.β arXiv:1509.07526 [Math], October.
Chan, Grace, and Andrew T.A. Wood. 1997.
βAlgorithm AS 312: An Algorithm for Simulating Stationary Gaussian Random Fields.β Journal of the Royal Statistical Society: Series C (Applied Statistics) 46 (1): 171β81.
Chan, G., and A. T. A. Wood. 1999.
βSimulation of Stationary Gaussian Vector Fields.β Statistics and Computing 9 (4): 265β68.
Charlier, Benjamin, Jean Feydy, Joan Alexis Glaunès, François-David Collin, and Ghislain Durif. 2021.
βKernel Operations on the GPU, with Autodiff, Without Memory Overflows.β Journal of Machine Learning Research 22 (74): 1β6.
Choromanski, Krzysztof, and Vikas Sindhwani. 2016.
βRecycling Randomness with Structure for Sublinear Time Kernel Expansions.β arXiv:1605.09049 [Cs, Stat], May.
Choudhuri, Nidhan, Subhashis Ghosal, and Anindya Roy. 2004.
βContiguity of the Whittle Measure for a Gaussian Time Series.β Biometrika 91 (1): 211β18.
Cotter, S. L., G. O. Roberts, A. M. Stuart, and D. White. 2013.
βMCMC Methods for Functions: Modifying Old Algorithms to Make Them Faster.β Statistical Science 28 (3): 424β46.
Davies, Tilman M., and David Bryant. 2013.
βOn Circulant Embedding for Gaussian Random Fields in R.β Journal of Statistical Software 55 (9).
Dietrich, C. R., and G. N. Newsam. 1993.
βA Fast and Exact Method for Multidimensional Gaussian Stochastic Simulations.β Water Resources Research 29 (8): 2861β69.
Durrande, Nicolas, Vincent Adam, Lucas Bordeaux, Stefanos Eleftheriadis, and James Hensman. 2019.
βBanded Matrix Operators for Gaussian Markov Models in the Automatic Differentiation Era.β In
Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics, 2780β89. PMLR.
Ellis, Robert L., and David C. Lay. 1992.
βFactorization of Finite Rank Hankel and Toeplitz Matrices.β Linear Algebra and Its Applications 173 (August): 19β38.
Erhel, Jocelyne, Mestapha Oumouni, GΓ©raldine Pichot, and Franck Schoefs. n.d. βAnalysis of Continuous Spectral Method for Sampling Stationary Gaussian Random Fields,β 26.
Flaxman, Seth, Andrew Gordon Wilson, Daniel B Neill, Hannes Nickisch, and Alexander J Smola. 2015. βFast Kronecker Inference in Gaussian Processes with Non-Gaussian Likelihoods.β In, 10.
Gilboa, E., Y. SaatΓ§i, and J. P. Cunningham. 2015.
βScaling Multidimensional Inference for Structured Gaussian Processes.β IEEE Transactions on Pattern Analysis and Machine Intelligence 37 (2): 424β36.
Graham, Ivan G., Frances Y. Kuo, Dirk Nuyens, Rob Scheichl, and Ian H. Sloan. 2017a.
βAnalysis of Circulant Embedding Methods for Sampling Stationary Random Fields.β arXiv:1710.00751 [Math], October.
Guinness, Joseph, and Montserrat Fuentes. 2016.
βCirculant Embedding of Approximate Covariances for Inference From Gaussian Data on Large Lattices.β Journal of Computational and Graphical Statistics 26 (1): 88β97.
Heinig, Georg, and Karla Rost. 2011.
βFast Algorithms for Toeplitz and Hankel Matrices.β Linear Algebra and Its Applications 435 (1): 1β59.
Kroese, Dirk P., and Zdravko I. Botev. 2013.
βSpatial Process Generation.β arXiv:1308.0399 [Stat], August.
Lang, Annika, and JΓΌrgen Potthoff. 2011.
βFast Simulation of Gaussian Random Fields.β Monte Carlo Methods and Applications 17 (3).
Loper, Jackson, David Blei, John P. Cunningham, and Liam Paninski. 2021.
βLinear-Time Inference for Gaussian Processes on One Dimension.β arXiv:2003.05554 [Cs, Stat], October.
Pleiss, Geoff, Jacob R. Gardner, Kilian Q. Weinberger, and Andrew Gordon Wilson. 2018.
βConstant-Time Predictive Distributions for Gaussian Processes.β In. arXiv.
Powell, Catherine E. 2014. βGenerating Realisations of Stationary Gaussian Random Fields by Circulant Embedding.β Matrix 2 (2): 1.
Rue, Havard. 2001.
βFast Sampling of Gaussian Markov Random Fields.β Journal of the Royal Statistical Society. Series B (Statistical Methodology) 63 (2): 325β38.
Rue, HΓ₯vard, and Leonhard Held. 2005.
Gaussian Markov Random Fields: Theory and Applications. Monographs on Statistics and Applied Probability 104. Boca Raton: Chapman & Hall/CRC.
SaatΓ§i, Yunus. 2012.
βScalable inference for structured Gaussian process models.β Ph.D., University of Cambridge.
SaatΓ§i, Yunus, Ryan Turner, and Carl Edward Rasmussen. 2010.
βGaussian Process Change Point Models.β In
Proceedings of the 27th International Conference on International Conference on Machine Learning, 927β34. ICMLβ10. Madison, WI, USA: Omnipress.
Sigrist, Fabio, Hans R. KΓΌnsch, and Werner A. Stahel. 2015a.
βSpate : An R Package for Spatio-Temporal Modeling with a Stochastic Advection-Diffusion Process.β Application/pdf.
Journal of Statistical Software 63 (14).
βββ. 2015b.
βStochastic Partial Differential Equation Based Modelling of Large Space-Time Data Sets.β Journal of the Royal Statistical Society: Series B (Statistical Methodology) 77 (1): 3β33.
Stroud, Jonathan R., Michael L. Stein, and Shaun Lysen. 2017.
βBayesian and Maximum Likelihood Estimation for Gaussian Processes on an Incomplete Lattice.β Journal of Computational and Graphical Statistics 26 (1): 108β20.
Teichmann, Jakob, and Karl-Gerald van den Boogaart. 2016.
βEfficient Simulation of Stationary Multivariate Gaussian Random Fields with Given Cross-Covariance.β Applied Mathematics 7 (17): 2183β94.
Ubaru, Shashanka, Jie Chen, and Yousef Saad. 2017.
βFast Estimation of \(tr(f(A))\) via Stochastic Lanczos Quadrature.β SIAM Journal on Matrix Analysis and Applications 38 (4): 1075β99.
Whittle, P. 1954. βOn Stationary Processes in the Plane.β Biometrika 41 (3/4): 434β49.
Whittle, P. 1952.
βTests of Fit in Time Series.β Biometrika 39 (3-4): 309β18.
βββ. 1953a.
βThe Analysis of Multiple Stationary Time Series.β Journal of the Royal Statistical Society: Series B (Methodological) 15 (1): 125β39.
βββ. 1953b.
βEstimation and Information in Stationary Time Series.β Arkiv FΓΆr Matematik 2 (5): 423β34.
Whittle, Peter. 1952.
βSome Results in Time Series Analysis.β Scandinavian Actuarial Journal 1952 (1-2): 48β60.
Wilson, Andrew Gordon, Christoph Dann, and Hannes Nickisch. 2015.
βThoughts on Massively Scalable Gaussian Processes.β arXiv:1511.01870 [Cs, Stat], November.
Wilson, Andrew Gordon, and Hannes Nickisch. 2015.
βKernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP).β In
Proceedings of the 32Nd International Conference on International Conference on Machine Learning - Volume 37, 1775β84. ICMLβ15. Lille, France: JMLR.org.
Wilson, James T, Viacheslav Borovitskiy, Alexander Terenin, Peter Mostowsky, and Marc Peter Deisenroth. 2021.
βPathwise Conditioning of Gaussian Processes.β Journal of Machine Learning Research 22 (105): 1β47.
Ye, Ke, and Lek-Heng Lim. 2016.
βEvery Matrix Is a Product of Toeplitz Matrices.β Foundations of Computational Mathematics 16 (3): 577β98.
No comments yet. Why not leave one?