Aalen, Odd O. 1978.
βNonparametric Inference for a Family of Counting Processes.β The Annals of Statistics 6 (4): 701β26.
Adelfio, Giada, and Frederic Paik Schoenberg. 2009.
βPoint Process Diagnostics Based on Weighted Second-Order Statistics and Their Asymptotic Properties.β Annals of the Institute of Statistical Mathematics 61 (4): 929β48.
Baddeley, Adrian, and Rolf Turner. 2006.
βModelling Spatial Point Patterns in R.β In
Case Studies in Spatial Point Process Modeling, edited by Adrian Baddeley, Pablo Gregori, Jorge Mateu, Radu Stoica, and Dietrich Stoyan, 23β74. Lecture Notes in Statistics 185. Springer New York.
Baddeley, A., R. Turner, J. MΓΈller, and M. Hazelton. 2005.
βResidual Analysis for Spatial Point Processes (with Discussion).β Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67 (5): 617β66.
Barnes, Josh, and Piet Hut. 1986.
βA Hierarchical O(N Log N) Force-Calculation Algorithm.β Nature 324 (6096): 446β49.
Bashtannyk, David M., and Rob J. Hyndman. 2001.
βBandwidth Selection for Kernel Conditional Density Estimation.β Computational Statistics & Data Analysis 36 (3): 279β98.
Battey, Heather, and Han Liu. 2013.
βSmooth Projected Density Estimation.β arXiv:1308.3968 [Stat], August.
Berman, Mark, and Peter Diggle. 1989.
βEstimating Weighted Integrals of the Second-Order Intensity of a Spatial Point Process.β Journal of the Royal Statistical Society. Series B (Methodological) 51 (1): 81β92.
Bernacchia, Alberto, and Simone Pigolotti. 2011.
βSelf-Consistent Method for Density Estimation.β Journal of the Royal Statistical Society: Series B (Statistical Methodology) 73 (3): 407β22.
Botev, Z. I., J. F. Grotowski, and D. P. Kroese. 2010.
βKernel Density Estimation via Diffusion.β The Annals of Statistics 38 (5): 2916β57.
Cline, Daren B. H. 1988.
βAdmissible Kernel Estimators of a Multivariate Density.β The Annals of Statistics 16 (4): 1421β27.
Crisan, Dan, and JoaquΓn MΓguez. 2014.
βParticle-Kernel Estimation of the Filter Density in State-Space Models.β Bernoulli 20 (4): 1879β929.
Cucala, Lionel. 2008.
βIntensity Estimation for Spatial Point Processes Observed with Noise.β Scandinavian Journal of Statistics 35 (2): 322β34.
DΓaz-Avalos, Carlos, P. Juan, and J. Mateu. 2012.
βSimilarity Measures of Conditional Intensity Functions to Test Separability in Multidimensional Point Processes.β Stochastic Environmental Research and Risk Assessment 27 (5): 1193β1205.
Diggle, Peter. 1985.
βA Kernel Method for Smoothing Point Process Data.β Journal of the Royal Statistical Society. Series C (Applied Statistics) 34 (2): 138β47.
Doosti, Hassan, and Peter Hall. 2015.
βMaking a Non-Parametric Density Estimator More Attractive, and More Accurate, by Data Perturbation.β Journal of the Royal Statistical Society: Series B (Statistical Methodology) 78 (2): 445β62.
Ellis, Steven P. 1991.
βDensity Estimation for Point Processes.β Stochastic Processes and Their Applications 39 (2): 345β58.
Geenens, Gery. 2014.
βProbit Transformation for Kernel Density Estimation on the Unit Interval.β Journal of the American Statistical Association 109 (505): 346β58.
Geer, Sara van de. 1996.
βRates of Convergence for the Maximum Likelihood Estimator in Mixture Models.β Journal of Nonparametric Statistics 6 (4): 293β310.
Greengard, L., and J. Strain. 1991.
βThe Fast Gauss Transform.β SIAM Journal on Scientific and Statistical Computing 12 (1): 79β94.
Hall, Peter. 1987.
βOn Kullback-Leibler Loss and Density Estimation.β The Annals of Statistics 15 (4): 1491β1519.
Hall, Peter, and Byeong U. Park. 2002.
βNew Methods for Bias Correction at Endpoints and Boundaries.β The Annals of Statistics 30 (5): 1460β79.
Helmers, Roelof, I. Wayan Mangku, and RiΔardas Zitikis. 2003.
βConsistent Estimation of the Intensity Function of a Cyclic Poisson Process.β Journal of Multivariate Analysis 84 (1): 19β39.
Ho, Nhat, and Stephen G. Walker. 2020.
βMultivariate Smoothing via the Fourier Integral Theorem and Fourier Kernel.β arXiv:2012.14482 [Math, Stat], December.
Ibragimov, I. 2001.
βEstimation of Analytic Functions.β In
Institute of Mathematical Statistics Lecture Notes - Monograph Series, 359β83. Beachwood, OH: Institute of Mathematical Statistics.
Jones, M.C., and D.A. Henderson. 2009.
βMaximum Likelihood Kernel Density Estimation: On the Potential of Convolution Sieves.β Computational Statistics & Data Analysis 53 (10): 3726β33.
Koenker, Roger, and Ivan Mizera. 2006.
βDensity Estimation by Total Variation Regularization.β Advances in Statistical Modeling and Inference, 613β34.
Lieshout, Marie-Colette N. M. van. 2011.
βOn Estimation of the Intensity Function of a Point Process.β Methodology and Computing in Applied Probability 14 (3): 567β78.
Liu, Guangcan, Shiyu Chang, and Yi Ma. 2012.
βBlind Image Deblurring by Spectral Properties of Convolution Operators.β arXiv:1209.2082 [Cs], September.
Malec, Peter, and Melanie Schienle. 2014.
βNonparametric Kernel Density Estimation Near the Boundary.β Computational Statistics & Data Analysis 72 (April): 57β76.
Marshall, Jonathan C., and Martin L. Hazelton. 2010.
βBoundary Kernels for Adaptive Density Estimators on Regions with Irregular Boundaries.β Journal of Multivariate Analysis 101 (4): 949β63.
OβBrien, Travis A., Karthik Kashinath, Nicholas R. Cavanaugh, William D. Collins, and John P. OβBrien. 2016.
βA Fast and Objective Multidimensional Kernel Density Estimation Method: fastKDE.β Computational Statistics & Data Analysis 101 (September): 148β60.
Panaretos, Victor M., and Kjell Konis. 2012.
βNonparametric Construction of Multivariate Kernels.β Journal of the American Statistical Association 107 (499): 1085β95.
Smith, Evan, and Michael S. Lewicki. 2005.
βEfficient Coding of Time-Relative Structure Using Spikes.β Neural Computation 17 (1): 19β45.
Stein, Michael L. 2005.
βSpace-Time Covariance Functions.β Journal of the American Statistical Association 100 (469): 310β21.
Yang, Changjiang, Ramani Duraiswami, and Larry S. Davis. 2004.
βEfficient Kernel Machines Using the Improved Fast Gauss Transform.β In
Advances in Neural Information Processing Systems, 1561β68.
Yang, Changjiang, Ramani Duraiswami, Nail A. Gumerov, and Larry Davis. 2003.
βImproved Fast Gauss Transform and Efficient Kernel Density Estimation.β In
Proceedings of the Ninth IEEE International Conference on Computer Vision - Volume 2, 464β64. ICCV β03. Washington, DC, USA: IEEE Computer Society.
Zeevi, Assaf J., and Ronny Meir. 1997.
βDensity Estimation Through Convex Combinations of Densities: Approximation and Estimation Bounds.β Neural Networks: The Official Journal of the International Neural Network Society 10 (1): 99β109.
Zhang, Shunpu, and Rohana J. Karunamuni. 2010.
βBoundary Performance of the Beta Kernel Estimators.β Journal of Nonparametric Statistics 22 (1): 81β104.
No comments yet. Why not leave one?