Allen-Zhu, Zeyuan, and Yuanzhi Li. 2019.
βCan SGD Learn Recurrent Neural Networks with Provable Generalization?β arXiv:1902.01028 [Cs, Math, Stat], February.
Alliney, S. 1992.
βDigital Filters as Absolute Norm Regularizers.β IEEE Transactions on Signal Processing 40 (6): 1548β62.
Antoniou, Andreas. 2005. Digital signal processing: signals, systems and filters. New York: McGraw-Hill.
Arjovsky, Martin, Amar Shah, and Yoshua Bengio. 2016.
βUnitary Evolution Recurrent Neural Networks.β In
Proceedings of the 33rd International Conference on International Conference on Machine Learning - Volume 48, 1120β28. ICMLβ16. New York, NY, USA: JMLR.org.
Ascher, Uri M. 2008. Numerical methods for evolutionary differential equations. Computational science and engineering 5. Philadelphia, Pa: SIAM, Soc. for Industrial and Applied Mathematics.
Atal, B. S. 2006.
βThe History of Linear Prediction.β IEEE Signal Processing Magazine 23 (2): 154β61.
Bach, Francis R., and Michael I. Jordan. 2006.
βLearning Spectral Clustering, with Application to Speech Separation.β Journal of Machine Learning Research 7 (Oct): 1963β2001.
Bach, Francis R., and Eric Moulines. 2013.
βNon-Strongly-Convex Smooth Stochastic Approximation with Convergence Rate O(1/n).β In
arXiv:1306.2119 [Cs, Math, Stat], 773β81.
Banitalebi-Dehkordi, Mehdi, and Amin Banitalebi-Dehkordi. 2014.
βMusic Genre Classification Using Spectral Analysis and Sparse Representation of the Signals.β Journal of Signal Processing Systems 74 (2): 273β80.
Barron, A.R. 1993.
βUniversal Approximation Bounds for Superpositions of a Sigmoidal Function.β IEEE Transactions on Information Theory 39 (3): 930β45.
Baydin, Atilim Gunes, and Barak A. Pearlmutter. 2014.
βAutomatic Differentiation of Algorithms for Machine Learning.β arXiv:1404.7456 [Cs, Stat], April.
Bayro-Corrochano, Eduardo. 2005.
βThe Theory and Use of the Quaternion Wavelet Transform.β Journal of Mathematical Imaging and Vision 24 (1): 19β35.
Ben Taieb, Souhaib, and Amir F. Atiya. 2016.
βA Bias and Variance Analysis for Multistep-Ahead Time Series Forecasting.β IEEE transactions on neural networks and learning systems 27 (1): 62β76.
Bengio, Samy, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. 2015.
βScheduled Sampling for Sequence Prediction with Recurrent Neural Networks.β In
Advances in Neural Information Processing Systems 28, 1171β79. NIPSβ15. Cambridge, MA, USA: Curran Associates, Inc.
Bengio, Y., P. Simard, and P. Frasconi. 1994.
βLearning Long-Term Dependencies with Gradient Descent Is Difficult.β IEEE Transactions on Neural Networks 5 (2): 157β66.
Bertin, N., R. Badeau, and E. Vincent. 2010.
βEnforcing Harmonicity and Smoothness in Bayesian Non-Negative Matrix Factorization Applied to Polyphonic Music Transcription.β IEEE Transactions on Audio, Speech, and Language Processing 18 (3): 538β49.
Blackman, R. B., and J. W. Tukey. 1959. The measurement of power spectra from the point of view of communications engineering. New York: Dover Publications.
Blei, David M., Alp Kucukelbir, and Jon D. McAuliffe. 2017.
βVariational Inference: A Review for Statisticians.β Journal of the American Statistical Association 112 (518): 859β77.
Bogert, B P, M J R Healy, and J W Tukey. 1963. βThe Quefrency Alanysis of Time Series for Echoes: Cepstrum, Pseudo-Autocovariance, Cross-Cepstrum and Saphe Cracking.β In, 209β43.
Bojarski, Mariusz, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D. Jackel, et al. 2016.
βEnd to End Learning for Self-Driving Cars.β arXiv:1604.07316 [Cs], April.
Bora, Ashish, Ajil Jalal, Eric Price, and Alexandros G. Dimakis. 2017.
βCompressed Sensing Using Generative Models.β In
International Conference on Machine Learning, 537β46.
Bordes, Antoine, LΓ©on Bottou, and Patrick Gallinari. 2009.
βSGD-QN: Careful Quasi-Newton Stochastic Gradient Descent.β Journal of Machine Learning Research 10 (December): 1737β54.
Borzì, Alfio, and Volker Schulz. 2012. Computational Optimization of Systems Governed by Partial Differential Equations. Computational Science and Engineering Series. Philadelphia: Society for Industrial and Applied Mathematics.
Bottou, LΓ©on. 1998.
βOnline Algorithms and Stochastic Approximations.β In
Online Learning and Neural Networks, edited by David Saad, 17:142. Cambridge, UK: Cambridge University Press.
βββ. 2010.
βLarge-Scale Machine Learning with Stochastic Gradient Descent.β In
Proceedings of the 19th International Conference on Computational Statistics (COMPSTATβ2010), 177β86. Paris, France: Springer.
βββ. 2012.
βStochastic Gradient Descent Tricks.β In
Neural Networks: Tricks of the Trade, 421β36. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg.
Bottou, LΓ©on, and Olivier Bousquet. 2008.
βThe Tradeoffs of Large Scale Learning.β In
Advances in Neural Information Processing Systems, edited by J.C. Platt, D. Koller, Y. Singer, and S. Roweis, 20:161β68. NIPS Foundation (http://books.nips.cc).
Bottou, LΓ©on, Frank E. Curtis, and Jorge Nocedal. 2016.
βOptimization Methods for Large-Scale Machine Learning.β arXiv:1606.04838 [Cs, Math, Stat], June.
Bottou, LΓ©on, and Yann LeCun. 2004.
βLarge Scale Online Learning.β In
Advances in Neural Information Processing Systems 16, edited by Sebastian Thrun, Lawrence Saul, and Bernhard SchΓΆlkopf. Cambridge, MA: MIT Press.
Boulanger-Lewandowski, Nicolas, Yoshua Bengio, and Pascal Vincent. 2012.
βModeling Temporal Dependencies in High-Dimensional Sequences: Application to Polyphonic Music Generation and Transcription.β In
29th International Conference on Machine Learning.
Box, George E. P., Gwilym M. Jenkins, Gregory C. Reinsel, and Greta M. Ljung. 2016. Time Series Analysis: Forecasting and Control. Fifth edition. Wiley Series in Probability and Statistics. Hoboken, New Jersey: John Wiley & Sons, Inc.
Bridle, J. S., and M. D. Brown. 1974. βAn Experimental Automatic Word Recognition System.β JSRU Report 1003 (5).
Buch, Michael, Elio Quinton, and Bob L Sturm. 2017. βNichtnegativeMatrixFaktorisierungnutzendesKlangsynthesenSystem (NiMFKS): Extensions of NMF-Based Concatenative Sound Synthesis.β In Proceedings of the 20th International Conference on Digital Audio Effects, 7. Edinburgh.
Cakir, Emre, Ezgi Can Ozan, and Tuomas Virtanen. 2016.
βFilterbank Learning for Deep Neural Network Based Polyphonic Sound Event Detection.β In
Neural Networks (IJCNN), 2016 International Joint Conference on, 3399β3406. IEEE.
Carabias-Orti, J. J., T. Virtanen, P. Vera-Candeas, N. Ruiz-Reyes, and F. J. Canadas-Quesada. 2011.
βMusical Instrument Sound Multi-Excitation Model for Non-Negative Spectrogram Factorization.β IEEE Journal of Selected Topics in Signal Processing 5 (6): 1144β58.
Carpenter, Bob, Matthew D. Hoffman, Marcus Brubaker, Daniel Lee, Peter Li, and Michael Betancourt. 2015.
βThe Stan Math Library: Reverse-Mode Automatic Differentiation in C++.β arXiv Preprint arXiv:1509.07164.
Chang, Bo, Minmin Chen, Eldad Haber, and Ed H. Chi. 2019.
βAntisymmetricRNN: A Dynamical System View on Recurrent Neural Networks.β In
Proceedings of ICLR.
Chang, Bo, Lili Meng, Eldad Haber, Lars Ruthotto, David Begert, and Elliot Holtham. 2018.
βReversible Architectures for Arbitrarily Deep Residual Neural Networks.β In
arXiv:1709.03698 [Cs, Stat].
Chang, Bo, Lili Meng, Eldad Haber, Frederick Tung, and David Begert. 2018.
βMulti-Level Residual Networks from Dynamical Systems View.β In
PRoceedings of ICLR.
Charles, Adam, Aurele Balavoine, and Christopher Rozell. 2016.
βDynamic Filtering of Time-Varying Sparse Signals via L1 Minimization.β IEEE Transactions on Signal Processing 64 (21): 5644β56.
Chen, Y., and A. O. Hero. 2012.
βRecursive β1,β Group Lasso.β IEEE Transactions on Signal Processing 60 (8): 3978β87.
Chevillon, Guillaume. 2007.
βDirect Multi-Step Estimation and Forecasting.β Journal of Economic Surveys 21 (4): 746β85.
Cho, Kyunghyun, Bart van MerriΓ«nboer, Dzmitry Bahdanau, and Yoshua Bengio. 2014.
βOn the Properties of Neural Machine Translation: Encoder-Decoder Approaches.β arXiv Preprint arXiv:1409.1259.
Choi, Keunwoo, George Fazekas, and Mark Sandler. 2016.
βAutomatic Tagging Using Deep Convolutional Neural Networks.β In
PRoceedings of ISMIR.
Choi, Keunwoo, George Fazekas, Mark Sandler, and Kyunghyun Cho. 2016.
βConvolutional Recurrent Neural Networks for Music Classification.β In
2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2392β96.
Choi, Keunwoo, GyΓΆrgy Fazekas, Kyunghyun Cho, and Mark Sandler. 2017.
βA Tutorial on Deep Learning for Music Information Retrieval.β arXiv:1709.04396 [Cs], September.
Choi, Keunwoo, GyΓΆrgy Fazekas, Mark Sandler, and Kyunghyun Cho. 2017.
βTransfer Learning for Music Classification and Regression Tasks.β In
Proceeding of The 18th International Society of Music Information Retrieval (ISMIR) Conference 2017. suzhou, China.
Chollet, FranΓ§ois. 2016.
βXception: Deep Learning with Depthwise Separable Convolutions.β arXiv:1610.02357 [Cs], October.
Choromanska, Anna, MIkael Henaff, Michael Mathieu, Gerard Ben Arous, and Yann LeCun. 2015.
βThe Loss Surfaces of Multilayer Networks.β In
Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics, 192β204.
Chung, Junyoung, Sungjin Ahn, and Yoshua Bengio. 2016.
βHierarchical Multiscale Recurrent Neural Networks.β arXiv:1609.01704 [Cs], September.
Chung, Junyoung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.
βEmpirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling.β In
NIPS.
Chung, Junyoung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. 2015.
βGated Feedback Recurrent Neural Networks.β In
Proceedings of the 32Nd International Conference on International Conference on Machine Learning - Volume 37, 2067β75. ICMLβ15. JMLR.org.
Chung, Junyoung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C Courville, and Yoshua Bengio. 2015.
βA Recurrent Latent Variable Model for Sequential Data.β In
Advances in Neural Information Processing Systems 28, edited by C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, 2980β88. Curran Associates, Inc.
Collins, Jasmine, Jascha Sohl-Dickstein, and David Sussillo. 2016.
βCapacity and Trainability in Recurrent Neural Networks.β In
arXiv:1611.09913 [Cs, Stat].
Cooijmans, Tim, Nicolas Ballas, CΓ©sar Laurent, ΓaΔlar GΓΌlΓ§ehre, and Aaron Courville. 2016.
βRecurrent Batch Normalization.β arXiv Preprint arXiv:1603.09025.
Cybenko, G. 1989.
βApproximation by Superpositions of a Sigmoidal Function.β Mathematics of Control, Signals and Systems 2: 303β14.
Cyrta, Pawel, Tomasz TrzciΕski, and Wojciech Stokowiec. 2017.
βSpeaker Diarization Using Deep Recurrent Convolutional Neural Networks for Speaker Embeddings.β arXiv:1708.02840 [Cs], August.
Dai, Wei, Chia Dai, Shuhui Qu, Juncheng Li, and Samarjit Das. 2016.
βVery Deep Convolutional Neural Networks for Raw Waveforms.β arXiv:1610.00087 [Cs], October.
Dauphin, Yann, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua Bengio. 2014.
βIdentifying and Attacking the Saddle Point Problem in High-Dimensional Non-Convex Optimization.β In
Advances in Neural Information Processing Systems 27, 2933β41. Curran Associates, Inc.
Davis, S., and P. Mermelstein. 1980.
βComparison of Parametric Representations for Monosyllabic Word Recognition in Continuously Spoken Sentences.β IEEE Transactions on Acoustics, Speech, and Signal Processing 28 (4): 357β66.
Defferrard, MichaΓ«l, Kirell Benzi, Pierre Vandergheynst, and Xavier Bresson. 2017.
βFMA: A Dataset For Music Analysis.β In
Proceedings of the 18th International Society for Music Information Retrieval Conference (ISMIRβ2017), Suzhou, China.
Dieleman, Sander, and Benjamin Schrauwen. 2014.
βEnd to End Learning for Music Audio.β In
2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 6964β68. IEEE.
Doerr, Andreas, Christian Daniel, Martin Schiegg, Duy Nguyen-Tuong, Stefan Schaal, Marc Toussaint, and Sebastian Trimpe. 2018.
βProbabilistic Recurrent State-Space Models.β arXiv:1801.10395 [Stat], January.
Doucet, Arnaud, Nando Freitas, and Neil Gordon. 2001.
Sequential Monte Carlo Methods in Practice. New York, NY: Springer New York.
Dozat, Timothy. n.d. βNAdam Report.β
Duchi, John, Elad Hazan, and Yoram Singer. 2011.
βAdaptive Subgradient Methods for Online Learning and Stochastic Optimization.β Journal of Machine Learning Research 12 (Jul): 2121β59.
Dumitrescu, Bogdan. 2017.
Positive trigonometric polynomials and signal processing applications. Second edition. Signals and communication technology. Cham: Springer.
Durbin, J., and S. J. Koopman. 2012. Time Series Analysis by State Space Methods. 2nd ed. Oxford Statistical Science Series 38. Oxford: Oxford University Press.
Eichler, Michael, Rainer Dahlhaus, and Johannes Dueck. 2016.
βGraphical Modeling for Multivariate Hawkes Processes with Nonparametric Link Functions.β Journal of Time Series Analysis, January, n/aβ.
Ekanadham, C., D. Tranchina, and E. P. Simoncelli. 2011.
βRecovery of Sparse Translation-Invariant Signals With Continuous Basis Pursuit.β IEEE Transactions on Signal Processing 59 (10): 4735β44.
Elbaz, Dan, and Michael Zibulevsky. 2017.
βPerceptual Audio Loss Function for Deep Learning.β In
Proceedings of the 18th International Society for Music Information Retrieval Conference (ISMIRβ2017), Suzhou, China.
Engel, Jesse, Cinjon Resnick, Adam Roberts, Sander Dieleman, Douglas Eck, Karen Simonyan, and Mohammad Norouzi. 2017.
βNeural Audio Synthesis of Musical Notes with WaveNet Autoencoders.β In
PMLR.
FΓ©votte, CΓ©dric, Nancy Bertin, and Jean-Louis Durrieu. 2008.
βNonnegative Matrix Factorization with the Itakura-Saito Divergence: With Application to Music Analysis.β Neural Computation 21 (3): 793β830.
Flamary, RΓ©mi, CΓ©dric FΓ©votte, Nicolas Courty, and Valentin Emiya. 2016.
βOptimal Spectral Transportation with Application to Music Transcription.β In
arXiv:1609.09799 [Cs, Stat], 703β11. Curran Associates, Inc.
Fonseca, Eduardo, Manoj Plakal, Daniel P. W. Ellis, Frederic Font, Xavier Favory, and Xavier Serra. 2019.
βLearning Sound Event Classifiers from Web Audio with Noisy Labels.β arXiv:1901.01189 [Cs, Eess, Stat], January.
Fraccaro, Marco, SΓΈ ren Kaae SΓΈ nderby, Ulrich Paquet, and Ole Winther. 2016.
βSequential Neural Models with Stochastic Layers.β In
Advances in Neural Information Processing Systems 29, edited by D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, 2199β2207. Curran Associates, Inc.
Friston, K. J. 2008.
βVariational Filtering.β NeuroImage 41 (3): 747β66.
Gal, Yarin, and Zoubin Ghahramani. 2015.
βDropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning.β In
Proceedings of the 33rd International Conference on Machine Learning (ICML-16).
Gemmeke, Jort F., Daniel P. W. Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R. Channing Moore, Manoj Plakal, and Marvin Ritter. 2017.
βAudio Set: An Ontology and Human-Labeled Dataset for Audio Events.β In
Proceedings of ICASSP 2017. New Orleans, LA.
Geronimo, Jeffrey S., and Hugo J. Woerdeman. 2004.
βPositive Extensions, FejΓ©r-Riesz Factorization and Autoregressive Filters in Two Variables.β Annals of Mathematics 160 (3): 839β906.
Gers, Felix A., Nicol N. Schraudolph, and JΓΌrgen Schmidhuber. 2002.
βLearning Precise Timing with LSTM Recurrent Networks.β Journal of Machine Learning Research 3 (Aug): 115β43.
Ghosh, Tapabrata. 2017.
βTowards a New Interpretation of Separable Convolutions.β arXiv:1701.04489 [Cs, Stat], January.
Goertzel, Gerald. 1958.
βAn Algorithm for the Evaluation of Finite Trigonometric Series.β The American Mathematical Monthly 65 (1): 34.
Goodfellow, Ian J., Oriol Vinyals, and Andrew M. Saxe. 2014.
βQualitatively Characterizing Neural Network Optimization Problems.β arXiv:1412.6544 [Cs, Stat], December.
Goodwin, M M, and M Vetterli. 1999.
βMatching Pursuit and Atomic Signal Models Based on Recursive Filter Banks.β IEEE Transactions on Signal Processing 47 (7): 1890β1902.
Goudarzi, Alireza, Peter Banda, Matthew R. Lakin, Christof Teuscher, and Darko Stefanovic. 2014.
βA Comparative Study of Reservoir Computing for Temporal Signal Processing.β arXiv:1401.2224 [Cs], January.
Graves, Alex. 2012.
Supervised Sequence Labelling with Recurrent Neural Networks. Studies in Computational Intelligence, v. 385. Heidelberg ; New York: Springer.
Green, D., and S. Bass. 1984.
βRepresenting Periodic Waveforms with Nonorthogonal Basis Functions.β IEEE Transactions on Circuits and Systems 31 (6): 518β34.
Gregor, Karol, and Yann LeCun. 2010.
βLearning fast approximations of sparse coding.β In
Proceedings of the 27th International Conference on Machine Learning (ICML-10), 399β406.
Gribonval, R. 2003.
βPiecewise Linear Source Separation.β In
Proc. Soc. Photographic Instrumentation Eng., 5207:297β310. San Diego, CA, USA.
Gribonval, R., and Emmanuel Bacry. 2003.
βHarmonic Decomposition of Audio Signals with Matching Pursuit.β IEEE Transactions on Signal Processing 51 (1): 101β11.
Gribonval, R., R. M. Figueras i Ventura, and P. Vandergheynst. 2006.
βA Simple Test to Check the Optimality of a Sparse Signal Approximation.β Signal Processing, Sparse Approximations in Signal and Image ProcessingSparse Approximations in Signal and Image Processing, 86 (3): 496β510.
Griewank, Andreas, and Andrea Walther. 2008. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. 2nd ed. Philadelphia, PA: Society for Industrial and Applied Mathematics.
Grosse, Roger, Rajat Raina, Helen Kwong, and Andrew Y. Ng. 2007.
βShift-Invariant Sparse Coding for Audio Classification.β In
The Twenty-Third Conference on Uncertainty in Artificial Intelligence (UAI2007), 9:8.
Gruslys, Audrunas, Remi Munos, Ivo Danihelka, Marc Lanctot, and Alex Graves. 2016.
βMemory-Efficient Backpropagation Through Time.β In
Advances in Neural Information Processing Systems 29, edited by D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, 4125β33. Curran Associates, Inc.
Gu, Albert, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher RΓ©. 2021.
βCombining Recurrent, Convolutional, and Continuous-Time Models with Linear State Space Layers.β In
Advances in Neural Information Processing Systems, 34:572β85. Curran Associates, Inc.
Gu, Shixiang, Sergey Levine, Ilya Sutskever, and Andriy Mnih. 2016.
βMuProp: Unbiased Backpropagation for Stochastic Neural Networks.β In
Proceedings of ICLR.
Gulrajani, Ishaan, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville. 2017.
βImproved Training of Wasserstein GANs.β arXiv:1704.00028 [Cs, Stat], March.
Ha, David, Andrew Dai, and Quoc V. Le. 2016.
βHyperNetworks.β arXiv:1609.09106 [Cs], September.
Haber, Eldad, and Lars Ruthotto. 2018.
βStable Architectures for Deep Neural Networks.β Inverse Problems 34 (1): 014004.
Hardt, Moritz, Tengyu Ma, and Benjamin Recht. 2018.
βGradient Descent Learns Linear Dynamical Systems.β The Journal of Machine Learning Research 19 (1): 1025β68.
Haykin, Simon S., ed. 2001.
Kalman Filtering and Neural Networks. Adaptive and Learning Systems for Signal Processing, Communications, and Control. New York: Wiley.
Hazan, Elad, Kfir Levy, and Shai Shalev-Shwartz. 2015.
βBeyond Convexity: Stochastic Quasi-Convex Optimization.β In
Advances in Neural Information Processing Systems 28, edited by C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, 1594β1602. Curran Associates, Inc.
Hazan, Elad, Karan Singh, and Cyril Zhang. 2017.
βLearning Linear Dynamical Systems via Spectral Filtering.β In
NIPS.
Helmholtz, Heinrich. 1863. Die Lehre von Den Tonempfindungen Als Physiologische Grundlage FΓΌr Die Theorie Der Musik. Braunschweig: J. Vieweg.
Henaff, Mikael, Kevin Jarrett, Koray Kavukcuoglu, and Yann LeCun. 2011.
βUnsupervised Learning of Sparse Features for Scalable Audio Classification.β In
ISMIR.
Hinton, G. E. 1995.
βThe Wake-Sleep Algorithm for Unsupervised Neural Networks.β Science 268 (5214): 1558β1161.
Hinton, G., Li Deng, Dong Yu, G.E. Dahl, A. Mohamed, N. Jaitly, A. Senior, et al. 2012.
βDeep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups.β IEEE Signal Processing Magazine 29 (6): 82β97.
Hochreiter, Sepp. 1998.
βThe Vanishing Gradient Problem During Learning Recurrent Neural Nets and Problem Solutions.β International Journal of Uncertainty Fuzziness and Knowledge Based Systems 6: 107β15.
Hochreiter, Sepp, Yoshua Bengio, Paolo Frasconi, and JΓΌrgen Schmidhuber. 2001.
βGradient Flow in Recurrent Nets: The Difficulty of Learning Long-Term Dependencies.β In
A Field Guide to Dynamical Recurrent Neural Networks. IEEE Press.
Hochreiter, Sepp, and Jiirgen Schmidhuber. 1997a.
βLTSM Can Solve Hard Time Lag Problems.β In
Advances in Neural Information Processing Systems: Proceedings of the 1996 Conference, 473β79.
Hochreiter, Sepp, and JΓΌrgen Schmidhuber. 1997b.
βLong Short-Term Memory.β Neural Computation 9 (8): 1735β80.
Hoffman, M D, and A Gelman. 2011. βThe No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo.β Arxiv Preprint arXiv:1111.4246.
Holan, Scott H., Robert Lund, and Ginger Davis. 2010.
βThe ARMA Alphabet Soup: A Tour of ARMA Model Variants.β Statistics Surveys 4: 232β74.
Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. 1989.
βMultilayer Feedforward Networks Are Universal Approximators.β Neural Networks 2 (5): 359β66.
Hoshen, Yedid, Ron J. Weiss, and Kevin W. Wilson. 2015.
βSpeech Acoustic Modeling from Raw Multichannel Waveforms.β In
Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on, 4624β28. IEEE.
Hou, Elizabeth, Earl Lawrence, and Alfred O. Hero. 2016.
βPenalized Ensemble Kalman Filters for High Dimensional Non-Linear Systems.β arXiv:1610.00195 [Physics, Stat], October.
Howard, Andrew G., Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017.
βMobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications.β arXiv:1704.04861 [Cs], April.
Hua, Yingbo, and Tapan K. Sarkar. 1990.
βMatrix Pencil Method for Estimating Parameters of Exponentially Damped/Undamped Sinusoids in Noise.β IEEE Transactions on Acoustics, Speech and Signal Processing 38 (5): 814β24.
Huang, Gao, Zhuang Liu, Kilian Q. Weinberger, and Laurens van der Maaten. 2016.
βDensely Connected Convolutional Networks.β arXiv:1608.06993 [Cs], August.
Huggins, P S, and S W Zucker. 2007.
βGreedy Basis Pursuit.β IEEE Transactions on Signal Processing 55 (7): 3760β72.
HΓΌrzeler, Markus, and Hans R. KΓΌnsch. 2001.
βApproximating and Maximising the Likelihood for a General State-Space Model.β In
Sequential Monte Carlo Methods in Practice, 159β75. Statistics for Engineering and Information Science. Springer, New York, NY.
Ignjatovic, Aleksandar, Chamith Wijenayake, and Gabriele Keller. 2018a.
βChromatic Derivatives and Approximations in PracticeβPart I: A General Framework.β IEEE Transactions on Signal Processing 66 (6): 1498β1512.
βββ. 2019. βChromatic Derivatives and Approximations in Practice (III): Continuous Time MUSIC Algorithm for Adaptive Frequency Estimation in Colored Noise,β 16.
Ionides, E. L., C. BretΓ³, and A. A. King. 2006.
βInference for Nonlinear Dynamical Systems.β Proceedings of the National Academy of Sciences 103 (49): 18438β43.
Ionides, Edward L., Anindya Bhadra, Yves AtchadΓ©, and Aaron King. 2011.
βIterated Filtering.β The Annals of Statistics 39 (3): 1776β1802.
Jaganathan, Kishore, Yonina C. Eldar, and Babak Hassibi. 2015.
βPhase Retrieval: An Overview of Recent Developments.β arXiv:1510.07713 [Cs, Math], October.
Jing, Li, Yichen Shen, Tena Dubcek, John Peurifoy, Scott Skirlo, Yann LeCun, Max Tegmark, and Marin SoljaΔiΔ. 2017.
βTunable Efficient Unitary Neural Networks (EUNN) and Their Application to RNNs.β In
PMLR, 1733β41.
Jost, P., P. Vandergheynst, and P. Frossard. 2006.
βTree-Based Pursuit: Algorithm and Properties.β IEEE Transactions on Signal Processing 54 (12): 4685β97.
Jost, P., P. Vandergheynst, S. Lesage, and R. Gribonval. 2006.
βMoTIF: An Efficient Algorithm for Learning Translation Invariant Dictionaries.β In
2006 IEEE International Conference on Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings, 5:Vβ. Toulouse, France.
Jozefowicz, Rafal, Wojciech Zaremba, and Ilya Sutskever. 2015.
βAn Empirical Exploration of Recurrent Network Architectures.β In
Proceedings of the 32nd International Conference on Machine Learning (ICML-15), 2342β50.
Jung, Alexander. 2013.
βAn RKHS Approach to Estimation with Sparsity Constraints.β In
Advances in Neural Information Processing Systems 29.
Kailath, Thomas. 1980. Linear Systems. Prentice-Hall Information and System Science Series. Englewood Cliffs, N.J: Prentice-Hall.
Kailath, Thomas, Ali H. Sayed, and Babak Hassibi. 2000. Linear Estimation. Prentice Hall Information and System Sciences Series. Upper Saddle River, N.J: Prentice Hall.
Kantas, N., A. Doucet, S. S. Singh, and J. M. Maciejowski. 2009.
βAn Overview of Sequential Monte Carlo Methods for Parameter Estimation in General State-Space Models.β IFAC Proceedings Volumes, 15th IFAC Symposium on System Identification, 42 (10): 774β85.
Karpathy, Andrej, Justin Johnson, and Li Fei-Fei. 2015.
βVisualizing and Understanding Recurrent Networks.β arXiv:1506.02078 [Cs], June.
Kaul, Shiva. 2020.
βLinear Dynamical Systems as a Core Computational Primitive.β In
Advances in Neural Information Processing Systems. Vol. 33.
KavΔiΔ, A., and J. M. F. Moura. 2000.
βMatrices with Banded Inverses: Inversion Algorithms and Factorization of Gauss-Markov Processes.β IEEE Transactions on Information Theory 46 (4): 1495β1509.
Kingma, Diederik P., Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling. 2016.
βImproving Variational Inference with Inverse Autoregressive Flow.β In
Advances in Neural Information Processing Systems 29. Curran Associates, Inc.
Klapuri, A., T. Virtanen, and T. Heittola. 2010.
βSound Source Separation in Monaural Music Signals Using Excitation-Filter Model and Em Algorithm.β In
2010 IEEE International Conference on Acoustics, Speech and Signal Processing, 5510β13.
Knudson, Karin C, Jacob Yates, Alexander Huk, and Jonathan W Pillow. 2014.
βInferring Sparse Representations of Continuous Signals with Continuous Orthogonal Matching Pursuit.β In
Advances in Neural Information Processing Systems 27, edited by Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, 27:1215β23. Curran Associates, Inc.
Kong, Q., Y. Xu, W. Wang, and M. D. Plumbley. 2017.
βA Joint Detection-Classification Model for Audio Tagging of Weakly Labelled Data.β In
Proceedings of ICASSP 2017. New Orleans, USA.
Kreutz-Delgado, Kenneth, Joseph F. Murray, Bhaskar D. Rao, Kjersti Engan, Te-Won Lee, and Terrence J. Sejnowski. 2003.
βDictionary Learning Algorithms for Sparse Representation.β Neural Computation 15 (2): 349β96.
Krishnan, Rahul G., Uri Shalit, and David Sontag. 2015.
βDeep Kalman Filters.β arXiv Preprint arXiv:1511.05121.
βββ. 2017.
βStructured Inference Networks for Nonlinear State Space Models.β In
Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, 2101β9.
Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. 2012.
βImagenet Classification with Deep Convolutional Neural Networks.β In
Advances in Neural Information Processing Systems, 1097β1105.
Kronland-Martinet, R., Ph. Guillemain, and S. Ystad. 1997.
βModelling of Natural Sounds by TimeβFrequency and Wavelet Representations.β Organised Sound 2 (03): 179β91.
Kronland-Martinet, R, Ph. Guillemain, and S Ystad. 2001.
βFrom Sound Modeling to Analysis-Synthesis of Sounds.β In
Workshop on Proceedings of MOSART Current Research Directions in Computer Music Workshop, 217β24.
Kuleshov, Volodymyr, S. Zayd Enam, and Stefano Ermon. 2017. βAudio Super-Resolution Using Neural Nets.β In Proceedings of International Conference on Learning Representations (ICLR) 2017.
Kutschireiter, Anna, Simone Carlo Surace, Henning Sprekeler, and Jean-Pascal Pfister. 2015a. βA Neural Implementation for Nonlinear Filtering.β arXiv Preprint arXiv:1508.06818.
Kutschireiter, Anna, Simone C Surace, Henning Sprekeler, and Jean-Pascal Pfister. 2015b.
βApproximate Nonlinear Filtering with a Recurrent Neural Network.β BMC Neuroscience 16 (Suppl 1): P196.
Kuznetsov, Vitaly, and Mehryar Mohri. 2014.
βGeneralization Bounds for Time Series Prediction with Non-Stationary Processes.β In
Algorithmic Learning Theory, edited by Peter Auer, Alexander Clark, Thomas Zeugmann, and Sandra Zilles, 260β74. Lecture Notes in Computer Science. Bled, Slovenia: Springer International Publishing.
Lamb, Alex, Anirudh Goyal, Ying Zhang, Saizheng Zhang, Aaron Courville, and Yoshua Bengio. 2016.
βProfessor Forcing: A New Algorithm for Training Recurrent Networks.β In
Advances In Neural Information Processing Systems.
Laroche, Clément, Hélène Papadopoulos, Matthieu Kowalski, and Gaël Richard. 2017.
βDrum Extraction in Single Channel Audio Signals Using Multi-Layer Non Negative Matrix Factor Deconvolution.β In
ICASSP. Nouvelle Orleans, United States.
Laurent, Thomas, and James von Brecht. 2016.
βA Recurrent Neural Network Without Chaos.β arXiv:1612.06212 [Cs], December.
LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. 2015.
βDeep Learning.β Nature 521 (7553): 436β44.
Lee, Honglak, Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng. 2009.
βConvolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations.β In
Proceedings of the 26th Annual International Conference on Machine Learning, 609β16. ICML β09. New York, NY, USA: ACM.
Lee, Jongpil, Jiyoung Park, Keunhyoung Luke Kim, and Juhan Nam. 2017.
βSample-Level Deep Convolutional Neural Networks for Music Auto-Tagging Using Raw Waveforms.β In
arXiv:1703.01789 [Cs].
Leglaive, Simon, Roland Badeau, and GaΓ«l Richard. 2017.
βMultichannel Audio Source Separation: Variational Inference of Time-Frequency Sources from Time-Domain Observations.β In
42nd International Conference on Acoustics, Speech and Signal Processing (ICASSP). Proc. 42nd International Conference on Acoustics, Speech and Signal Processing (ICASSP). La Nouvelle OrlΓ©ans, LA, United States: IEEE.
Lei, Tao, and Yu Zhang. 2017.
βTraining RNNs as Fast as CNNs.β arXiv:1709.02755 [Cs], September.
Lewicki, M S, and T J Sejnowski. 1999.
βCoding Time-Varying Signals Using Sparse, Shift-Invariant Representations.β In
NIPS, 11:730β36. Denver, CO: MIT Press.
Lewicki, Michael S. 2002.
βEfficient Coding of Natural Sounds.β Nature Neuroscience 5 (4): 356β63.
Lewicki, Michael S., and Terrence J. Sejnowski. 2000.
βLearning Overcomplete Representations.β Neural Computation 12 (2): 337β65.
Li, Shuai, Wanqing Li, Chris Cook, Ce Zhu, and Yanbo Gao. 2018.
βIndependently Recurrent Neural Network (IndRNN): Building A Longer and Deeper RNN.β In
arXiv:1803.04831 [Cs].
Li, Yanghao, Naiyan Wang, Jiaying Liu, and Xiaodi Hou. 2017.
βDemystifying Neural Style Transfer.β In
IJCAI.
Li, Yuhong, Tianle Cai, Yi Zhang, Deming Chen, and Debadeepta Dey. 2022.
βWhat Makes Convolutional Models Great on Long Sequence Modeling?β arXiv.
LindstrΓΆm, Erik, Edward Ionides, Jan Frydendall, and Henrik Madsen. 2012.
βEfficient Iterated Filtering.β In
IFAC-PapersOnLine (System Identification, Volume 16), 45:1785β90. 16th IFAC Symposium on System Identification. IFAC & Elsevier Ltd.
LindstrΓΆm, Erik, Jonas StrΓΆjby, Mats BrodΓ©n, Magnus Wiktorsson, and Jan Holst. 2008.
βSequential Calibration of Options.β Computational Statistics & Data Analysis 52 (6): 2877β91.
Lipton, Zachary C. 2016.
βStuck in a What? Adventures in Weight Space.β arXiv:1602.07320 [Cs], February.
Lipton, Zachary C., John Berkowitz, and Charles Elkan. 2015.
βA Critical Review of Recurrent Neural Networks for Sequence Learning.β arXiv:1506.00019 [Cs], May.
Liu, Jane, and Mike West. 2001.
βCombined Parameter and State Estimation in Simulation-Based Filtering.β In
Sequential Monte Carlo Methods in Practice, 197β223. Statistics for Engineering and Information Science. Springer, New York, NY.
Liu, Jen-Yu, Shyh-Kang Jeng, and Yi-Hsuan Yang. 2016.
βApplying Topological Persistence in Convolutional Neural Network for Music Audio Signals.β arXiv:1608.07373 [Cs], August.
Ljung, Lennart. 1999. System Identification: Theory for the User. 2nd ed. Prentice Hall Information and System Sciences Series. Upper Saddle River, NJ: Prentice Hall PTR.
Ljung, Lennart, Georg Ch Pflug, and Harro Walk. 2012.
Stochastic Approximation and Optimization of Random Systems. Vol. 17. BirkhΓ€user.
Ljung, Lennart, and Torsten SΓΆderstrΓΆm. 1983. Theory and Practice of Recursive Identification. The MIT Press Series in Signal Processing, Optimization, and Control 4. Cambridge, Mass: MIT Press.
Mallat, StΓ©phane G., and Zhifeng Zhang. 1993.
βMatching Pursuits with Time-Frequency Dictionaries.β IEEE Transactions on Signal Processing 41 (12): 3397β3415.
Marelli, D., and Minyue Fu. 2010.
βA Recursive Method for the Approximation of LTI Systems Using Subband Processing.β IEEE Transactions on Signal Processing 58 (3): 1025β34.
Martens, James. 2010.
βDeep Learning via Hessian-Free Optimization.β In
Proceedings of the 27th International Conference on International Conference on Machine Learning, 735β42. ICMLβ10. USA: Omnipress.
Martens, James, and Ilya Sutskever. 2011.
βLearning Recurrent Neural Networks with Hessian-Free Optimization.β In
Proceedings of the 28th International Conference on International Conference on Machine Learning, 1033β40. ICMLβ11. USA: Omnipress.
βββ. 2012.
βTraining Deep and Recurrent Networks with Hessian-Free Optimization.β In
Neural Networks: Tricks of the Trade, 479β535. Lecture Notes in Computer Science. Springer.
Masri, Paul, Andrew Bateman, and Nishan Canagarajah. 1997a.
βA Review of TimeβFrequency Representations, with Application to Sound/Music AnalysisβResynthesis.β Organised Sound 2 (03): 193β205.
Mattingley, J., and S. Boyd. 2010.
βReal-Time Convex Optimization in Signal Processing.β IEEE Signal Processing Magazine 27 (3): 50β61.
McFee, Brian, Thierry Bertin-Mahieux, Daniel P.W. Ellis, and Gert R.G. Lanckriet. 2012.
βThe Million Song Dataset Challenge.β In, 909. ACM Press.
McFee, Brian, and Daniel PW Ellis. 2011.
βAnalyzing Song Structure with Spectral Clustering.β In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Megretski, A. 2003.
βPositivity of Trigonometric Polynomials.β In
42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475), 4:3814β3817 vol.4.
Mehri, Soroush, Kundan Kumar, Ishaan Gulrajani, Rithesh Kumar, Shubham Jain, Jose Sotelo, Aaron Courville, and Yoshua Bengio. 2017.
βSampleRNN: An Unconditional End-to-End Neural Audio Generation Model.β In
Proceedings of International Conference on Learning Representations (ICLR) 2017.
Meinshausen, Nicolai, and Bin Yu. 2009.
βLasso-Type Recovery of Sparse Representations for High-Dimensional Data.β The Annals of Statistics 37 (1): 246β70.
Mermelstein, Paul, and C H Chen. 1976.
βDistance Measures for Speech Recognition: Psychological and Instrumental.β In
Pattern Recognition and Artificial Intelligence, 101:374β88. Academic Press.
Meyer, Matthias, Jan Beutel, and Lothar Thiele. 2017. βUnsupervised Feature Learning for Audio Analysis.β In Proceedings of International Conference on Learning Representations (ICLR) 2017.
Mhammedi, Zakaria, Andrew Hellicar, Ashfaqur Rahman, and James Bailey. 2017.
βEfficient Orthogonal Parametrisation of Recurrent Neural Networks Using Householder Reflections.β In
PMLR, 2401β9.
MΕynarski, Wiktor, and Josh H. McDermott. 2017.
βLearning Mid-Level Auditory Codes from Natural Sound Statistics.β arXiv:1701.07138 [Cs, q-Bio], January.
Mohammed, Salah-Eldin A., and Michael K. R. Scheutzow. 1997.
βLyapunov Exponents of Linear Stochastic Functional-Differential Equations. II. Examples and Case Studies.β The Annals of Probability 25 (3): 1210β40.
Monner, Derek, and James A. Reggia. 2012.
βA Generalized LSTM-Like Training Algorithm for Second-Order Recurrent Neural Networks.β Neural Networks 25 (January): 70β83.
Moorer, J.A. 1974.
βThe Optimum Comb Method of Pitch Period Analysis of Continuous Digitized Speech.β IEEE Transactions on Acoustics, Speech and Signal Processing 22 (5): 330β38.
Moradkhani, Hamid, Soroosh Sorooshian, Hoshin V. Gupta, and Paul R. Houser. 2005.
βDual StateβParameter Estimation of Hydrological Models Using Ensemble Kalman Filter.β Advances in Water Resources 28 (2): 135β47.
Mozer, Michael C., Denis Kazakov, and Robert V. Lindsey. 2018.
βState-Denoised Recurrent Neural Networks.β arXiv:1805.08394 [Cs], May.
MΓΌller, M, F Kurth, and M Clausen. 2005a.
βAudio Matching via Chroma-Based Statistical Features.β In
Proc. Int. Conf. Music Info. Retrieval, 288β95. London, U.K.
βββ. 2005b.
βChroma-Based Statistical Audio Features for Audio Matching.β In
IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, 275β78. New Paltz, NY.
Narayan, S. Shyamla, Andrei N. Temchin, Alberto Recio, and Mario A. Ruggero. 1998.
βFrequency Tuning of Basilar Membrane and Auditory Nerve Fibers in the Same Cochleae.β Science 282 (5395): 1882β84.
Neal, Radford M., and Geoffrey E. Hinton. 1998.
βA View of the EM Algorithm That Justifies Incremental, Sparse, and Other Variants.β In
Learning in Graphical Models, edited by Michael I. Jordan, 355β68. NATO ASI Series 89. Springer Netherlands.
Needell, D., and J. A. Tropp. 2008.
βCoSaMP: Iterative Signal Recovery from Incomplete and Inaccurate Samples.β arXiv:0803.2392 [Cs, Math], March.
Nerrand, O., P. Roussel-Ragot, L. Personnaz, G. Dreyfus, and S. Marcos. 1993.
βNeural Networks and Nonlinear Adaptive Filtering: Unifying Concepts and New Algorithms.β Neural Computation 5 (2): 165β99.
Nussbaum-Thom, Markus, Jia Cui, Bhuvana Ramabhadran, and Vaibhava Goel. 2016.
βAcoustic Modeling Using Bidirectional Gated Recurrent Convolutional Units.β In, 390β94.
Nyquist, H. 1928.
βCertain Topics in Telegraph Transmission Theory.β Transactions of the American Institute of Electrical Engineers 47 (2): 617β44.
Oliveira, MaurΓcio C. de, and Robert E. Skelton. 2001.
βStability Tests for Constrained Linear Systems.β In
Perspectives in Robust Control, 241β57. Lecture Notes in Control and Information Sciences. Springer, London.
Oord, Aaron van den, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. 2016.
βWaveNet: A Generative Model for Raw Audio.β In
9th ISCA Speech Synthesis Workshop.
Pascanu, Razvan, Yann N. Dauphin, Surya Ganguli, and Yoshua Bengio. 2014.
βOn the Saddle Point Problem for Non-Convex Optimization.β arXiv:1405.4604 [Cs], May.
Pascanu, Razvan, Tomas Mikolov, and Yoshua Bengio. 2013.
βOn the Difficulty of Training Recurrent Neural Networks.β In
arXiv:1211.5063 [Cs], 1310β18.
Patel, Vivak. 2017.
βOn SGDβs Failure in Practice: Characterizing and Overcoming Stalling.β arXiv:1702.00317 [Cs, Math, Stat], February.
Peeters, G. 2004. βA Large Set of Audio Features for Sound Description (Similarity and Classification) in the CUIDADO Project.β
Pillonetto, Gianluigi. 2016.
βThe Interplay Between System Identification and Machine Learning.β arXiv:1612.09158 [Cs, Stat], December.
Polyak, B. T., and A. B. Juditsky. 1992.
βAcceleration of Stochastic Approximation by Averaging.β SIAM Journal on Control and Optimization 30 (4): 838β55.
Pons, Jordi, Thomas Lidy, and Xavier Serra. 2016.
βExperimenting with Musically Motivated Convolutional Neural Networks.β In
2016 14th International Workshop on Content-Based Multimedia Indexing (CBMI), 1β6. Bucharest, Romania: IEEE.
Pons, Jordi, Oriol Nieto, Matthew Prockup, Erik M. Schmidt, Andreas F. Ehmann, and Xavier Serra. 2017.
βEnd to End Learning for Music Audio Tagging at Scale.β In
Proceedings of ISMIR.
Pons, Jordi, and Xavier Serra. 2018.
βRandomly Weighted CNNs for (Music) Audio Classification.β arXiv:1805.00237 [Cs, Eess], May.
Prandoni, Paolo, and Martin Vetterli. 2008. Signal processing for communications. Communication and information sciences. Lausanne: EPFL Press.
Preis, Douglas, and Voula Chris Georgopoulos. 1999.
βWigner Distribution Representation and Analysis of Audio Signals: An Illustrated Tutorial Review.β Journal of the Audio Engineering Society 47 (12): 1043β53.
Qu, Shuhui, Juncheng Li, Wei Dai, and Samarjit Das. 2016a.
βLearning Filter Banks Using Deep Learning For Acoustic Signals.β arXiv:1611.09526 [Cs], November.
Rafii, Z. 2018.
βSliding Discrete Fourier Transform with Kernel Windowing [Lecture Notes].β IEEE Signal Processing Magazine 35 (6): 88β92.
Ragazzini, J. R., and L. A. Zadeh. 1952.
βThe Analysis of Sampled-Data Systems.β Transactions of the American Institute of Electrical Engineers, Part II: Applications and Industry 71 (5): 225β34.
Rajan, Rajeev, Manaswi Misra, and Hema A. Murthy. 2017.
βMelody Extraction from Music Using Modified Group Delay Functions.β International Journal of Speech Technology 20 (1): 185β204.
Rall, Louis B. 1981. Automatic Differentiation: Techniques and Applications. Lecture Notes in Computer Science 120. Berlin ; New York: Springer-Verlag.
Ravelli, E, G Richard, and L Daudet. 2008.
βFast MIR in a Sparse Transform Domain.β In
Int. Conf. Music Info. Retrieval. Philadelphia, PA.
Rawat, Waseem, and Zenghui Wang. 2017.
βDeep Convolutional Neural Networks for Image Classification: A Comprehensive Review.β Neural Computation 29 (9): 2352β2449.
Rebollo-Neira, Laura. 2007.
βOblique Matching Pursuit.β IEEE Signal Processing Letters 14 (10): 703β6.
Rebollo-Neira, L., and D. Lowe. 2002.
βOptimized Orthogonal Matching Pursuit Approach.β IEEE Signal Processing Letters 9 (4): 137β40.
Rioul, O., and M. Vetterli. 1991.
βWavelets and Signal Processing.β IEEE Signal Processing Magazine 8 (4): 14β38.
Robbins, Herbert, and Sutton Monro. 1951.
βA Stochastic Approximation Method.β The Annals of Mathematical Statistics 22 (3): 400β407.
Robbins, H., and D. Siegmund. 1971.
βA Convergence Theorem for Non Negative Almost Supermartingales and Some Applications.β In
Optimizing Methods in Statistics, edited by Jagdish S. Rustagi, 233β57. Academic Press.
Roberts, Adam, Jesse Engel, and Douglas Eck. 2017.
βHierarchical Variational Autoencoders for Music.β In
NIPS Workshop on Machine Learning for Creativity and Design.
Robertson, Andrew, and Mark Plumbley. 2007.
βB-Keeper: A Beat-Tracker for Live Performance.β In
Proceedings of the 7th International Conference on New Interfaces for Musical Expression, 234β37. NIME β07. New York, NY, USA: ACM.
Robertson, Andrew, Adam M. Stark, and Mark D. Plumbley. 2011.
βReal-Time Visual Beat Tracking Using a Comb Filter Matrix.β In
Proceedings of the International Computer Music Conference 2011.
Robertson, Andrew, Adam Stark, and Matthew EP Davies. 2013.
βPercussive Beat Tracking Using Real-Time Median Filtering.β In
Proceedings of European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases.
Routtenberg, Tirza, and Joseph Tabrikian. 2010.
βBlind MIMO-AR System Identification and Source Separation with Finite-Alphabet.β IEEE Transactions on Signal Processing 58 (3): 990β1000.
Rubinstein, Ron, A.M. Bruckstein, and Michael Elad. 2010.
βDictionaries for Sparse Representation Modeling.β Proceedings of the IEEE 98 (6): 1045β57.
Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. 1986.
βLearning Representations by Back-Propagating Errors.β Nature 323 (6088): 533β36.
Sagun, Levent, V. Ugur Guney, Gerard Ben Arous, and Yann LeCun. 2014.
βExplorations on High Dimensional Landscapes.β arXiv:1412.6615 [Cs, Stat], December.
Sainath, T. N., B. Kingsbury, A. r Mohamed, and B. Ramabhadran. 2013.
βLearning Filter Banks Within a Deep Neural Network Framework.β In
2013 IEEE Workshop on Automatic Speech Recognition and Understanding, 297β302.
Sainath, Tara N., Ron J. Weiss, Andrew W. Senior, Kevin W. Wilson, and Oriol Vinyals. 2015.
βLearning the Speech Front-End with Raw Waveform CLDNNs.β In
INTERSPEECH, 1β5.
SΓ€relΓ€, Jaakko, and Harri Valpola. 2005.
βDenoising Source Separation.β Journal of Machine Learning Research 6 (Mar): 233β72.
Schniter, P., and S. Rangan. 2012.
βCompressive Phase Retrieval via Generalized Approximate Message Passing.β In
2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 815β22.
Sefati, S., N. J. Cowan, and R. Vidal. 2015.
βLinear Systems with Sparse Inputs: Observability and Input Recovery.β In
2015 American Control Conference (ACC), 5251β57.
Seuret, Alexandre, and FrΓ©dΓ©ric Gouaisbaut. 2013.
βWirtinger-Based Integral Inequality: Application to Time-Delay Systems.β Automatica 49 (9): 2860β66.
Shah, Ankit, Anurag Kumar, Alexander G. Hauptmann, and Bhiksha Raj. 2018.
βA Closer Look at Weak Label Learning for Audio Events.β arXiv:1804.09288 [Cs, Eess], April.
Shannon, C. E. 1949.
βCommunication in the Presence of Noise.β Proceedings of the IRE 37 (1): 10β21.
Shen, Kaiming, and Wei Yu. 2018.
βFractional Programming for Communication SystemsβPart I: Power Control and Beamforming.β IEEE Transactions on Signal Processing 66 (10): 2616β30.
Simonyan, Karen, and Andrew Zisserman. 2014.
βVery Deep Convolutional Networks for Large-Scale Image Recognition.β arXiv:1409.1556 [Cs], September.
SjΓΆberg, Jonas, Qinghua Zhang, Lennart Ljung, Albert Benveniste, Bernard Delyon, Pierre-Yves Glorennec, HΓ₯kan Hjalmarsson, and Anatoli Juditsky. 1995.
βNonlinear Black-Box Modeling in System Identification: A Unified Overview.β Automatica, Trends in System Identification, 31 (12): 1691β1724.
Smaragdis, Paris. 2004.
βNon-Negative Matrix Factor Deconvolution; Extraction of Multiple Sound Sources from Monophonic Inputs.β In
Independent Component Analysis and Blind Signal Separation, edited by Carlos G. Puntonet and Alberto Prieto, 494β99. Lecture Notes in Computer Science. Granada, Spain: Springer Berlin Heidelberg.
Smaragdis, P., and J. C. Brown. 2003.
βNon-Negative Matrix Factorization for Polyphonic Music Transcription.β In
Applications of Signal Processing to Audio and Acoustics, 2003 IEEE Workshop on., 177β80.
Smith, Evan C., and Michael S. Lewicki. 2004.
βLearning Efficient Auditory Codes Using Spikes Predicts Cochlear Filters.β In
Advances in Neural Information Processing Systems, 1289β96.
βββ. 2006.
βEfficient Auditory Coding.β Nature 439 (7079): 978β82.
Smith, Julius O. 2007.
Introduction to Digital Filters with Audio Applications. http://www.w3k.org/books/: W3K Publishing.
Smith, Leonard A. 2000. βDisentangling Uncertainty and Error: On the Predictability of Nonlinear Systems.β In Nonlinear Dynamics and Statistics.
Smith, Leslie N., and Nicholay Topin. 2017.
βExploring Loss Function Topology with Cyclical Learning Rates.β arXiv:1702.04283 [Cs], February.
Smith, Steven W. 1997. The Scientist and Engineerβs Guide to Digital Signal Processing. 1st ed. San Diego, Calif: California Technical Pub.
SΓΆderstrΓΆm, T., and P. Stoica, eds. 1988. System Identification. Upper Saddle River, NJ, USA: Prentice-Hall, Inc.
Soh, Yong Sheng, and Venkat Chandrasekaran. 2017.
βA Matrix Factorization Approach for Learning Semidefinite-Representable Regularizers.β arXiv:1701.01207 [Cs, Math, Stat], January.
Stepleton, Thomas, Razvan Pascanu, Will Dabney, Siddhant M. Jayakumar, Hubert Soyer, and Remi Munos. 2018.
βLow-Pass Recurrent Neural Networks - A Memory Architecture for Longer-Term Correlation Discovery.β arXiv:1805.04955 [Cs, Stat], May.
Sutskever, Ilya. 2013.
βTraining Recurrent Neural Networks.β PhD Thesis, Toronto, Ont., Canada, Canada: University of Toronto.
Sutskever, Ilya, James Martens, George E. Dahl, and Geoffrey E. Hinton. 2013.
βOn the Importance of Initialization and Momentum in Deep Learning.β In
ICML (3), 28:1139β47. PMLR.
Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
βGoing Deeper with Convolutions.β In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1β9.
Tallec, Corentin, and Yann Ollivier. 2017.
βUnbiasing Truncated Backpropagation Through Time.β arXiv:1705.08209 [Cs], May.
Telgarsky, Matus. 2017.
βNeural Networks and Rational Functions.β In
PMLR, 3387β93.
Thickstun, John, Zaid Harchaoui, and Sham Kakade. 2017.
βLearning Features of Music from Scratch.β In
Proceedings of International Conference on Learning Representations (ICLR) 2017.
Tippett, Michael K., Jeffrey L. Anderson, Craig H. Bishop, Thomas M. Hamill, and Jeffrey S. Whitaker. 2003.
βEnsemble Square Root Filters.β Monthly Weather Review 131 (7): 1485β90.
Tong, Matthew H., Adam D. Bickett, Eric M. Christiansen, and Garrison W. Cottrell. 2007.
βLearning Grammatical Structure with Echo State Networks.β Neural Networks 20 (3): 424β32.
Tran, Dustin, Matthew D. Hoffman, Rif A. Saurous, Eugene Brevdo, Kevin Murphy, and David M. Blei. 2017.
βDeep Probabilistic Programming.β In
ICLR.
Tran, Dustin, Alp Kucukelbir, Adji B. Dieng, Maja Rudolph, Dawen Liang, and David M. Blei. 2016.
βEdward: A Library for Probabilistic Modeling, Inference, and Criticism.β arXiv:1610.09787 [Cs, Stat], October.
Triefenbach, F., A. Jalalvand, K. Demuynck, and J. P. Martens. 2013.
βAcoustic Modeling With Hierarchical Reservoirs.β IEEE Transactions on Audio, Speech, and Language Processing 21 (11): 2439β50.
Tropp, J A, M B Wakin, M F Duarte, D Baron, and R G Baraniuk. 2006.
βRandom Filters for Compressive Sampling and Reconstruction.β In
Proceedings of the IEEE International Conference Acoustics, Speech, and Signal Processing, 3:872β75.
Tsipas, Nikolaos, Lazaros Vrysis, Charalampos Dimoulas, and George Papanikolaou. 2017.
βEfficient Audio-Driven Multimedia Indexing Through Similarity-Based Speech / Music Discrimination.β Multimedia Tools and Applications, January, 1β19.
Uncini, Aurelio. 2003.
βAudio Signal Processing by Neural Networks.β Neurocomputing, Evolving Solution with Neural Networks, 55 (3β4): 593β625.
Van Eeghem, Frederik, and Lieven De Lathauwer. 2013.
βBlind System Identification as a Compressed Sensing Problem.βVenkataramani, Shrikant, and Paris Smaragdis. 2017.
βEnd to End Source Separation with Adaptive Front-Ends.β arXiv:1705.02514 [Cs], May.
Venkataramani, Shrikant, Y. Cem Subakan, and Paris Smaragdis. 2017.
βNeural Network Alternatives to Convolutive Audio Models for Source Separation.β arXiv:1709.07908 [Cs, Eess], September.
Vincent, E., N. Bertin, and R. Badeau. 2008.
βHarmonic and Inharmonic Nonnegative Matrix Factorization for Polyphonic Pitch Transcription.β In
2008 IEEE International Conference on Acoustics, Speech and Signal Processing, 109β12.
Virtanen, Tuomas. 2006.
βUnsupervised Learning Methods for Source Separation in Monaural Music Signals.β In
Signal Processing Methods for Music Transcription, 267β96. Springer.
Wang, Xinxi, and Ye Wang. 2014.
βImproving Content-Based and Hybrid Music Recommendation Using Deep Learning.β In
Proceedings of the 22Nd ACM International Conference on Multimedia, 627β36. MM β14. New York, NY, USA: ACM.
Wang, Zhong-Qiu, Jonathan Le Roux, DeLiang Wang, and John R. Hershey. 2018.
βEnd-to-End Speech Separation with Unfolded Iterative Phase Reconstruction.β arXiv:1804.10204 [Cs, Eess, Stat], April.
Werbos, P. J. 1990.
βBackpropagation Through Time: What It Does and How to Do It.β Proceedings of the IEEE 78 (10): 1550β60.
Wiatowski, Thomas, Philipp Grohs, and Helmut BΓΆlcskei. 2018.
βEnergy Propagation in Deep Convolutional Neural Networks.β IEEE Transactions on Information Theory 64 (7): 1β1.
Williams, Ronald J., and David Zipser. 1989.
βA Learning Algorithm for Continually Running Fully Recurrent Neural Networks.β Neural Computation 1 (2): 270β80.
Wisdom, Scott, Thomas Powers, John Hershey, Jonathan Le Roux, and Les Atlas. 2016.
βFull-Capacity Unitary Recurrent Neural Networks.β In
Advances in Neural Information Processing Systems, 4880β88.
Wisdom, Scott, Thomas Powers, James Pitton, and Les Atlas. 2016.
βInterpretable Recurrent Neural Networks Using Sequential Sparse Recovery.β In
Advances in Neural Information Processing Systems 29.
Wright, Matthew, James Beauchamp, Kelly Fitz, Xavier Rodet, Axel RΓΆbel, Xavier Serra, and Gregory Wakefield. 2001.
βAnalysis/Synthesis Comparison.β Organised Sound 5 (03): 173β89.
Wu, Xiaoxia, Rachel Ward, and LΓ©on Bottou. 2018.
βWNGrad: Learn the Learning Rate in Gradient Descent.β arXiv:1803.02865 [Cs, Math, Stat], March.
Wu, Yuhuai, Saizheng Zhang, Ying Zhang, Yoshua Bengio, and Ruslan R Salakhutdinov. 2016.
βOn Multiplicative Integration with Recurrent Neural Networks.β In
Advances in Neural Information Processing Systems 29, edited by D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, 2856β64. Curran Associates, Inc.
Wyse, L. 2017.
βAudio Spectrogram Representations for Processing with Convolutional Neural Networks.β In
Proceedings of the First International Conference on Deep Learning and Music, Anchorage, US, May, 2017 (arXiv:1706.08675v1 [Cs.NE]).
Xie, Bo, Yingyu Liang, and Le Song. 2016.
βDiversity Leads to Generalization in Neural Networks.β arXiv:1611.03131 [Cs, Stat], November.
Yaghoobi, M., Sangnam Nam, R. Gribonval, and M.E. Davies. 2013.
βConstrained Overcomplete Analysis Operator Learning for Cosparse Signal Modelling.β IEEE Transactions on Signal Processing 61 (9): 2341β55.
Yin, W, S Osher, D Goldfarb, and J Darbon. 2008.
βBregman Iterative Algorithms for \(\ell_1\)-Minimization with Applications to Compressed Sensing.β SIAM Journal on Imaging Sciences 1 (1): 143β68.
Yu, Dong, and Jinyu Li. 2018.
βRecent Progresses in Deep Learning Based Acoustic Models (Updated).β arXiv:1804.09298 [Cs, Eess], April.
Yu, Guoshen, and Jean-Jacques Slotine. 2009.
βAudio Classification from Time-Frequency Texture.β In
Acoustics, Speech, and Signal Processing, IEEE International Conference on, 0:1677β80. Los Alamitos, CA, USA: IEEE Computer Society.
Yu, Haizi, and Lav R. Varshney. 2017. βTowards Deep Interpretability (MUS-ROVER II): Learning Hierarchical Representations of Tonal Music.β In Proceedings of International Conference on Learning Representations (ICLR) 2017.
Zhang, X., and W. R. Zbigniew. 2007.
βAnalysis of Sound Features for Music Timbre Recognition.β In
International Conference on Multimedia and Ubiquitous Engineering, 2007. MUE β07, 3β8. Washington, DC.
Zhang, Yuchen, Percy Liang, and Martin J. Wainwright. 2016.
βConvexified Convolutional Neural Networks.β arXiv:1609.01000 [Cs], September.
Zhu, Zhenyao, Jesse H. Engel, and Awni Hannun. 2016.
βLearning Multiscale Features Directly from Waveforms.β In
Interspeech 2016, 1305β9.
Zils, A, and F Pachet. 2001.
βMusical Mosaicing.β In
Proceedings of DAFx-01, 2:135. Limerick, Ireland.
Zinkevich, Martin. 2003.
βOnline Convex Programming and Generalized Infinitesimal Gradient Ascent.β In
Proceedings of the Twentieth International Conference on International Conference on Machine Learning, 928β35. ICMLβ03. Washington, DC, USA: AAAI Press.
No comments yet. Why not leave one?