Andrieu, Christophe, and Christian P. Robert. 2001.
“Controlled MCMC for Optimal Sampling.” Working Paper 2001-33.
Center for Research in Economics and Statistics.
https://econpapers.repec.org/paper/crswpaper/2001-33.htm.
Andrieu, Christophe, and Johannes Thoms. 2008.
“A Tutorial on Adaptive MCMC.” Statistics and Computing 18 (4): 343–73.
https://doi.org/10.1007/s11222-008-9110-y.
Atchadé, Yves, Gersende Fort, Eric Moulines, and Pierre Priouret. 2011.
“Adaptive Markov Chain Monte Carlo: Theory and Methods.” In
Bayesian Time Series Models, edited by David Barber, A. Taylan Cemgil, and Silvia Chiappa, 32–51.
Cambridge:
Cambridge University Press.
https://doi.org/10.1017/CBO9780511984679.003.
Gilks, Walter R., Gareth O. Roberts, and Sujit K. Sahu. 1998.
“Adaptive Markov Chain Monte Carlo Through Regeneration.” Journal of the American Statistical Association 93 (443): 1045–54.
https://doi.org/10.2307/2669848.
Griffin, Jim, Krys Latuszynski, and Mark Steel. 2019.
“In Search of Lost (Mixing) Time: Adaptive Markov Chain Monte Carlo Schemes for Bayesian Variable Selection with Very Large p.” May 7, 2019.
http://arxiv.org/abs/1708.05678.
Maire, Florian, Nial Friel, Antonietta Mira, and Adrian E. Raftery. 2019.
“Adaptive Incremental Mixture Markov Chain Monte Carlo.” Journal of Computational and Graphical Statistics 28 (4): 790–805.
https://doi.org/10.1080/10618600.2019.1598872.
Mathew, B, A M Bauer, P Koistinen, T C Reetz, J Léon, and M J Sillanpää. 2012.
“Bayesian Adaptive Markov Chain Monte Carlo Estimation of Genetic Parameters.” Heredity 109 (4): 235–45.
https://doi.org/10.1038/hdy.2012.35.
Roberts, Gareth O., and Jeffrey S. Rosenthal. 2001.
“Optimal Scaling for Various Metropolis-Hastings Algorithms.” Statistical Science 16 (4): 351–67.
https://doi.org/10.1214/ss/1015346320.
———. 2009.
“Examples of Adaptive MCMC.” Journal of Computational and Graphical Statistics 18 (2): 349–67.
https://doi.org/10.1198/jcgs.2009.06134.
Rosenthal, Jeffrey. 2011.
“Optimal Proposal Distributions and Adaptive MCMC.” In
Handbook of Markov Chain Monte Carlo, edited by Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-Li Meng. Vol. 20116022. Chapman &
Hall/
CRC Handbooks of
Modern Statistical Methods.
Chapman and Hall/CRC.
https://doi.org/10.1201/b10905-5.
Sejdinovic, Dino, Heiko Strathmann, Maria Lomeli Garcia, Christophe Andrieu, and Arthur Gretton. 2014.
“Kernel Adaptive Metropolis-Hastings.” In
International Conference on Machine Learning, 1665–73.
Beijing, China:
JMLR.org.
http://arxiv.org/abs/1307.5302.
Strathmann, Heiko, Dino Sejdinovic, Samuel Livingstone, Zoltan Szabo, and Arthur Gretton. 2015.
“Gradient-Free Hamiltonian Monte Carlo with Efficient Kernel Exponential Families.” In
Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 1, 955–63.
NIPS’15.
Montreal, Canada:
MIT Press.
http://arxiv.org/abs/1506.02564.