Blazek, Paul J., and Milo M. Lin. 2020.
“A Neural Network Model of Perception and Reasoning.” arXiv:2002.11319 [Cs, q-Bio], February.
———. 2021.
“Explainable Neural Networks That Simulate Reasoning.” Nature Computational Science 1 (9): 607–18.
Blazek, Paul J., Kesavan Venkatesh, and Milo M. Lin. 2021.
“Deep Distilling: Automated Code Generation Using Explainable Deep Learning.” arXiv:2111.08275 [Cs], November.
Bottou, Leon. 2011.
“From Machine Learning to Machine Reasoning.” arXiv:1102.1808 [Cs], February.
Bubeck, Sébastien, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Peter Lee, et al. 2023.
“Sparks of Artificial General Intelligence: Early Experiments with GPT-4.” arXiv.
Ellis, Kevin, Armando Solar-Lezama, and Josh Tenenbaum. 2016.
“Sampling for Bayesian Program Learning.” In
Advances in Neural Information Processing Systems 29, edited by D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, 1289–97. Curran Associates, Inc.
Garcez, Artur d’Avila, and Luis C. Lamb. 2020.
“Neurosymbolic AI: The 3rd Wave.” arXiv.
Graves, Alex, Greg Wayne, and Ivo Danihelka. 2014.
“Neural Turing Machines.” arXiv:1410.5401 [Cs], October.
Graves, Alex, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-Barwińska, Sergio Gómez Colmenarejo, et al. 2016.
“Hybrid Computing Using a Neural Network with Dynamic External Memory.” Nature advance online publication (October).
Grefenstette, Edward, Karl Moritz Hermann, Mustafa Suleyman, and Phil Blunsom. 2015.
“Learning to Transduce with Unbounded Memory.” arXiv:1506.02516 [Cs], June.
Gulcehre, Caglar, Sarath Chandar, Kyunghyun Cho, and Yoshua Bengio. 2016.
“Dynamic Neural Turing Machine with Soft and Hard Addressing Schemes.” arXiv:1607.00036 [Cs], June.
Hannun, Awni, Vineel Pratap, Jacob Kahn, and Wei-Ning Hsu. 2020.
“Differentiable Weighted Finite-State Transducers.” arXiv:2010.01003 [Cs, Stat], October.
Ikeda, M. 1989.
“Decentralized Control of Large Scale Systems.” In
Three Decades of Mathematical System Theory: A Collection of Surveys at the Occasion of the 50th Birthday of Jan C. Willems, edited by Hendrik Nijmeijer and Johannes M. Schumacher, 219–42. Lecture Notes in Control and Information Sciences. Berlin, Heidelberg: Springer.
Jaitly, Navdeep, David Sussillo, Quoc V. Le, Oriol Vinyals, Ilya Sutskever, and Samy Bengio. 2015.
“A Neural Transducer.” arXiv:1511.04868 [Cs], November.
Kaiser, Łukasz, and Ilya Sutskever. 2015.
“Neural GPUs Learn Algorithms.” arXiv:1511.08228 [Cs], November.
Kim, Jason Z., and Dani S. Bassett. 2022.
“A Neural Programming Language for the Reservoir Computer.” arXiv:2203.05032 [Cond-Mat, Physics:nlin], March.
Lamb, Luis C., Artur Garcez, Marco Gori, Marcelo Prates, Pedro Avelar, and Moshe Vardi. 2020.
“Graph Neural Networks Meet Neural-Symbolic Computing: A Survey and Perspective.” In
IJCAI 2020.
Lample, Guillaume, and François Charton. 2019.
“Deep Learning for Symbolic Mathematics.” arXiv:1912.01412 [Cs], December.
Looks, Moshe, Marcello Herreshoff, DeLesley Hutchins, and Peter Norvig. 2017.
“Deep Learning with Dynamic Computation Graphs.” In
Proceedings of ICLR.
Perez, Julien, and Fei Liu. 2016.
“Gated End-to-End Memory Networks.” arXiv:1610.04211 [Cs, Stat], October.
Putzky, Patrick, and Max Welling. 2017.
“Recurrent Inference Machines for Solving Inverse Problems.” arXiv:1706.04008 [Cs], June.
Wang, Cheng, and Mathias Niepert. 2019.
“State-Regularized Recurrent Neural Networks.” arXiv.
Wang, Xin, Yudong Chen, and Wenwu Zhu. 2021.
“A Survey on Curriculum Learning.” arXiv.
Wei, Qi, Kai Fan, Lawrence Carin, and Katherine A. Heller. 2017.
“An Inner-Loop Free Solution to Inverse Problems Using Deep Neural Networks.” arXiv:1709.01841 [Cs], September.
Weston, Jason, Sumit Chopra, and Antoine Bordes. 2014.
“Memory Networks.” arXiv:1410.3916 [Cs, Stat], October.
Zhang, Yi, Arturs Backurs, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar, and Tal Wagner. 2022.
“Unveiling Transformers with LEGO: A Synthetic Reasoning Task.” arXiv.
No comments yet. Why not leave one?