# Algebraic probability

If you liked it then you prob’ly put a ring on it

June 15, 2017 — June 24, 2021

Commonly used algebraic structures over probability, as seen in, for example, Free probability.

## 1 Algebraic probability

In algebraic probability we do not take the Kolmogorov axioms as foundational, but do away with measure theory and event spaces, starting rather from RVs and expectations.

George Lowther introduces this and a connection to quantum probablility in characteristically plain-talk style 1, 2, which is one useful generalization. We can also get a handle on “non-commutative” probability this way, and are especially interested in free probability in that context. But my knowledge is exhausted now. If you wish to know more, here are some people who actually know stuff about

- Terry Tao, 254A, Notes 5: Free probability
- Speicher survey articles
- Speicher’s blog Free Probability Theory
- Roland Speicher’s other surveys

## 2 Group structures which arise in classic probability

- the convolution semigroup, used in divisible processes (what do you call the semigroup of maximum processes?)
- the general transition semigroup of Markov processes.

There is obviously a lot going on . But I do not know it. See, however, John Baez’s category theory lists.

## 3 References

*IEEE Transactions on Information Theory*.

*Lévy Processes and Stochastic Calculus*. Cambridge Studies in Advanced Mathematics 116.

*Probability Measures on Groups X*.

*Statistics & Probability Letters*.

*Algebraic Probability Theory*.

*arXiv:1908.08125 [Math]*.

*arXiv:1902.10763 [Math]*.