Fourier transforms


\[\renewcommand{\vv}[1]{\boldsymbol{#1}} \renewcommand{\mm}[1]{\boldsymbol{#1}} \renewcommand{\mmm}[1]{\mathrm{#1}} \renewcommand{\cc}[1]{\mathcal{#1}} \renewcommand{\ff}[1]{\mathfrak{#1}} \renewcommand{\oo}[1]{\operatorname{#1}} \renewcommand{\cc}[1]{\mathcal{#1}}\]

Placeholder.

The greatest of the integral transforms.

I especially need to learn about Fourier transforms of radial functions.

References

Dokmanic, I., and D. Petrinovic. 2010. “Convolution on the $n$-Sphere With Application to PDF Modeling.” IEEE Transactions on Signal Processing 58 (3): 1157–70. https://doi.org/10.1109/TSP.2009.2033329.
Kausel, Eduardo, and Mirza M. Irfan Baig. 2012. “Laplace Transform of Products of Bessel Functions: A Visitation of Earlier Formulas.” Quarterly of Applied Mathematics 70 (1): 77–97. https://doi.org/10.1090/S0033-569X-2011-01239-2.
Potts, Daniel, and Niel Van Buggenhout. 2017. “Fourier Extension and Sampling on the Sphere.” In 2017 International Conference on Sampling Theory and Applications (SampTA), 82–86. Tallin, Estonia: IEEE. https://doi.org/10.1109/SAMPTA.2017.8024365.
Schaback, Robert, and Z. Wu. 1996. “Operators on Radial Functions.” Journal of Computational and Applied Mathematics 73 (1): 257–70. https://doi.org/10.1016/0377-0427(96)00047-7.
Vembu, S. 1961. “Fourier Transformation of the n -Dimensional Radial Delta Function.” The Quarterly Journal of Mathematics 12 (1): 165–68. https://doi.org/10.1093/qmath/12.1.165.