Akkus, Cem, Luyang Chu, Vladana Djakovic, Steffen Jauch-Walser, Philipp Koch, Giacomo Loss, Christopher Marquardt, et al. 2023.
“Multimodal Deep Learning.” arXiv.
Bonilla, Edwin V., Kian Ming A. Chai, and Christopher K. I. Williams. 2007.
“Multi-Task Gaussian Process Prediction.” In
Proceedings of the 20th International Conference on Neural Information Processing Systems, 153–60. NIPS’07. USA: Curran Associates Inc.
Caruana, Rich. 1998.
“Multitask Learning.” In
Learning to Learn, 95–133. Springer, Boston, MA.
Dai, Ran, and Rina Foygel Barber. 2016.
“The Knockoff Filter for FDR Control in Group-Sparse and Multitask Regression.” arXiv Preprint arXiv:1602.03589.
Evgeniou, Theodoros, Charles A. Micchelli, and Massimiliano Pontil. 2005.
“Learning Multiple Tasks with Kernel Methods.” Journal of Machine Learning Research 6 (Apr): 615–37.
Evgeniou, Theodoros, and Massimiliano Pontil. 2004.
“Regularized Multi-Task Learning.” In
Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 109–17. KDD ’04. New York, NY, USA: Association for Computing Machinery.
Moreno-Muñoz, Pablo, Antonio Artés-Rodríguez, and Mauricio A. Álvarez. 2019.
“Continual Multi-Task Gaussian Processes.” arXiv:1911.00002 [Cs, Stat], October.
Osborne, M. A., S. J. Roberts, A. Rogers, S. D. Ramchurn, and N. R. Jennings. 2008.
“Towards Real-Time Information Processing of Sensor Network Data Using Computationally Efficient Multi-Output Gaussian Processes.” In
2008 International Conference on Information Processing in Sensor Networks (Ipsn 2008), 109–20.
Platt, John C., and Alan H. Barr. 1987.
“Constrained Differential Optimization.” In
Proceedings of the 1987 International Conference on Neural Information Processing Systems, 612–21. NIPS’87. Cambridge, MA, USA: MIT Press.
Radford, Alec, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. “Language Models Are Unsupervised Multitask Learners,” 24.
Titsias, Michalis K., and Miguel Lázaro-Gredilla. 2011.
“Spike and Slab Variational Inference for Multi-Task and Multiple Kernel Learning.” In
Advances in Neural Information Processing Systems 24, edited by J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger, 2339–47. Curran Associates, Inc.
Williams, Christopher, Stefan Klanke, Sethu Vijayakumar, and Kian M. Chai. 2009.
“Multi-Task Gaussian Process Learning of Robot Inverse Dynamics.” In
Advances in Neural Information Processing Systems 21, edited by D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, 265–72. Curran Associates, Inc.
No comments yet. Why not leave one?