Adler, Robert J., and Jonathan E. Taylor. 2007.
Random Fields and Geometry. Springer Monographs in Mathematics 115. New York: Springer.
Adler, Robert J, Jonathan E Taylor, and Keith J Worsley. 2016.
Applications of Random Fields and Geometry Draft.
Álvarez, Mauricio A., and Neil D. Lawrence. 2011.
“Computationally Efficient Convolved Multiple Output Gaussian Processes.” Journal of Machine Learning Research 12 (41): 1459–1500.
Álvarez, Mauricio A., Lorenzo Rosasco, and Neil D. Lawrence. 2012.
“Kernels for Vector-Valued Functions: A Review.” Foundations and Trends® in Machine Learning 4 (3): 195–266.
Bonilla, Edwin V., Kian Ming A. Chai, and Christopher K. I. Williams. 2007.
“Multi-Task Gaussian Process Prediction.” In
Proceedings of the 20th International Conference on Neural Information Processing Systems, 153–60. NIPS’07. USA: Curran Associates Inc.
Bruinsma, Wessel, Eric Perim, William Tebbutt, Scott Hosking, Arno Solin, and Richard Turner. 2020.
“Scalable Exact Inference in Multi-Output Gaussian Processes.” In
International Conference on Machine Learning, 1190–1201. PMLR.
Dai, Zhenwen, Mauricio Álvarez, and Neil Lawrence. 2017.
“Efficient Modeling of Latent Information in Supervised Learning Using Gaussian Processes.” Advances in Neural Information Processing Systems 30: 5131–39.
Davison, Andrew J., and Joseph Ortiz. 2019.
“FutureMapping 2: Gaussian Belief Propagation for Spatial AI.” arXiv:1910.14139 [Cs], October.
Evgeniou, Theodoros, Charles A. Micchelli, and Massimiliano Pontil. 2005.
“Learning Multiple Tasks with Kernel Methods.” Journal of Machine Learning Research 6 (Apr): 615–37.
Evgeniou, Theodoros, and Massimiliano Pontil. 2004.
“Regularized Multi-Task Learning.” In
Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 109–17. KDD ’04. New York, NY, USA: Association for Computing Machinery.
Gelfand, Alan, and Sudipto Banerjee. 2010.
“Multivariate Spatial Process Models.” In
Handbook of Spatial Statistics, edited by Alan Gelfand, Peter Diggle, Montserrat Fuentes, and Peter Guttorp, 20103158:495–515. CRC Press.
Gneiting, Tilmann, William Kleiber, and Martin Schlather. 2010.
“Matérn Cross-Covariance Functions for Multivariate Random Fields.” Journal of the American Statistical Association 105 (491): 1167–77.
Leibfried, Felix, Vincent Dutordoir, S. T. John, and Nicolas Durrande. 2022.
“A Tutorial on Sparse Gaussian Processes and Variational Inference.” arXiv.
Micchelli, Charles A., and Massimiliano Pontil. 2005a.
“Learning the Kernel Function via Regularization.” Journal of Machine Learning Research 6 (Jul): 1099–1125.
———. 2005b.
“On Learning Vector-Valued Functions.” Neural Computation 17 (1): 177–204.
Moreno-Muñoz, Pablo, Antonio Artés, and Mauricio Álvarez. 2018.
“Heterogeneous Multi-Output Gaussian Process Prediction.” In
Advances in Neural Information Processing Systems, edited by S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, 31:6711–20. Curran Associates, Inc.
Moreno-Muñoz, Pablo, Antonio Artés-Rodríguez, and Mauricio A. Álvarez. 2019.
“Continual Multi-Task Gaussian Processes.” arXiv:1911.00002 [Cs, Stat], October.
Osborne, M. A., S. J. Roberts, A. Rogers, S. D. Ramchurn, and N. R. Jennings. 2008.
“Towards Real-Time Information Processing of Sensor Network Data Using Computationally Efficient Multi-Output Gaussian Processes.” In
2008 International Conference on Information Processing in Sensor Networks (Ipsn 2008), 109–20.
Parra, Gabriel, and Felipe Tobar. 2017.
“Spectral Mixture Kernels for Multi-Output Gaussian Processes.” In
Advances in Neural Information Processing Systems, edited by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, 30:6681–90. Curran Associates, Inc.
Schlather, Martin, Alexander Malinowski, Peter J. Menck, Marco Oesting, and Kirstin Strokorb. 2015.
“Analysis, Simulation and Prediction of Multivariate Random Fields with Package Random Fields.” Journal of Statistical Software 63 (8): 1.
Seeger, Matthias, Yee-Whye Teh, and Michael I Jordan. 2005.
“Semiparametric Latent Factor Models,” 31.
Stegle, Oliver, Christoph Lippert, Joris Mooij, Neil Lawrence, and Karsten Borgwardt. 2011.
“Efficient Inference in Matrix-Variate Gaussian Models with Iid Observation Noise.” In
Proceedings of the 24th International Conference on Neural Information Processing Systems, 630–38. NIPS’11. Red Hook, NY, USA: Curran Associates Inc.
Williams, Christopher, Stefan Klanke, Sethu Vijayakumar, and Kian M. Chai. 2009.
“Multi-Task Gaussian Process Learning of Robot Inverse Dynamics.” In
Advances in Neural Information Processing Systems 21, edited by D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, 265–72. Curran Associates, Inc.
No comments yet. Why not leave one?