Neural diffusion models



Placeholder.

Suggestive connection to thermodynamics (Sohl-Dickstein et al. 2015).

References

Dhariwal, Prafulla, and Alex Nichol. 2021. “Diffusion Models Beat GANs on Image Synthesis.” arXiv:2105.05233 [Cs, Stat], June. http://arxiv.org/abs/2105.05233.
Ho, Jonathan, Ajay Jain, and Pieter Abbeel. 2020. “Denoising Diffusion Probabilistic Models.” arXiv:2006.11239 [Cs, Stat], December. http://arxiv.org/abs/2006.11239.
Hoogeboom, Emiel, Alexey A. Gritsenko, Jasmijn Bastings, Ben Poole, Rianne van den Berg, and Tim Salimans. 2021. “Autoregressive Diffusion Models.” arXiv:2110.02037 [Cs, Stat], October. http://arxiv.org/abs/2110.02037.
Nichol, Alex, and Prafulla Dhariwal. 2021. “Improved Denoising Diffusion Probabilistic Models.” arXiv:2102.09672 [Cs, Stat], February. http://arxiv.org/abs/2102.09672.
Sohl-Dickstein, Jascha, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. 2015. “Deep Unsupervised Learning Using Nonequilibrium Thermodynamics.” arXiv:1503.03585 [Cond-Mat, q-Bio, Stat], November. http://arxiv.org/abs/1503.03585.
Song, Jiaming, Chenlin Meng, and Stefano Ermon. 2021. “Denoising Diffusion Implicit Models.” arXiv:2010.02502 [Cs], November. http://arxiv.org/abs/2010.02502.
Song, Yang, and Stefano Ermon. 2020a. “Generative Modeling by Estimating Gradients of the Data Distribution.” arXiv:1907.05600 [Cs, Stat], October. http://arxiv.org/abs/1907.05600.
———. 2020b. “Improved Techniques for Training Score-Based Generative Models.” arXiv:2006.09011 [Cs, Stat], October. http://arxiv.org/abs/2006.09011.

No comments yet. Why not leave one?

GitHub-flavored Markdown & a sane subset of HTML is supported.