Placeholder.

SDEs are time-indexed, causal stochastic processes which notionally integrate an ordinary differential equation over some driving noise. As seen in state filters, optimal control, financial mathematics etc.

Terminology problem: when people talk about these they really mean stochastic integral equations, in the sense that the driving noise process is integrated. When you differentiate the noise process, it leads, AFAICT to Malliavin calculus.

Cosma’s explanation of SDEs looks good for cannibalising for parts when I write my own.

Useful tools: infinitesimal generators, martingales, Dale Robert’s cheat sheet, Itō-Taylor expansions…

Terminology problem: Many references take SDEs to be synonymous with Itō processes, whose driving noise is Brownian. In full generality, e.g. (Kallenberg 2002) they are a lot more general than that.

One confusion is that Itō’s formula, which is an important tool here, is applicable more broadly than to Brownian-type diffusions

Let \(X=\left(X^{1}, \ldots, X^{n}\right)\) be an n-tuple of semimartingales and let \(f: \mathbb{R}^{n} \rightarrow\) R have continuous second order partial derivatives. Then \(f(X)\) is again a semimartingale and the following formula holds:

\[ \begin{aligned} f\left(X_{t}\right)=& f\left(X_{0}\right)+\sum_{i=1}^{n} \int_{0+}^{t} \frac{\partial f}{\partial x_{i}}\left(X_{s-}\right) d X_{s}^{i} \\ &+\frac{1}{2} \sum_{1 \leq i, j \leq n} \int_{0+}^{t} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\left(X_{s-}\right) d\left[X^{i}, X^{j}\right]_{s}^{c} \\ &+\sum_{0<s \leq t}\left(f\left(X_{s}\right)-f\left(X_{s-}\right)-\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}\left(X_{s-}\right) \Delta X_{s}^{i}\right) \end{aligned} \]

This does get messy for non-Brownian processes, however. Schoutens, Leuven, and Studer (2001) give a tractable example for Poisson processes.

## References

*Proceedings of the London Mathematical Society*101 (3): 697–726. https://doi.org/10.1112/plms/pdq004.

*Malaysian Journal of Fundamental and Applied Sciences*13 (3). https://doi.org/10.11113/mjfas.v13n3.633.

*Fundamentals of Stochastic Filtering*. Springer.

*Diffusion Processes and Stochastic Calculus*. EMS Textbooks in Mathematics. Zurich, Switzerland: European Mathematical Society.

*Electron. Comm. Probab*6 (95): 106. http://www.emis.ams.org/journals/EJP-ECP/_ejpecp/ECP/include/getdoc73f8.pdf?id=3485&article=1622&mode=pdf.

*Journal of Computational and Applied Mathematics*, Special issue on evolutionary problems, 205 (2): 982–1001. https://doi.org/10.1016/j.cam.2006.03.040.

*Scandinavian Journal of Statistics*n/a (n/a). https://doi.org/10.1111/sjos.12474.

*Stochastic Processes and Calculus*. Springer Texts in Business and Economics. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-23428-1.

*Limit Theorems for Stochastic Processes*, edited by Jean Jacod and Albert N. Shiryaev, 1–63. Grundlehren Der Mathematischen Wissenschaften. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-02514-7_1.

*Foundations of Modern Probability*. 2nd ed. Probability and Its Applications. New York: Springer-Verlag. https://doi.org/10.1007/978-1-4757-4015-8.

*Introduction to Stochastic Calculus With Applications*. Imperial College Press.

*Mathematische Nachrichten*151 (1): 33–50. https://doi.org/10.1002/mana.19911510103.

*Stochastic Analysis and Applications*10 (4): 431–41. https://doi.org/10.1080/07362999208809281.

*Numerical Solution of Stochastic Differential Equations*, edited by Peter E. Kloeden and Eckhard Platen, 161–226. Applications of Mathematics. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-662-12616-5_5.

*Numerical Solution of Stochastic Differential Equations*. Berlin, Heidelberg: Springer Berlin Heidelberg. https://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=3099793.

*Statistics & Probability Letters*8 (3): 229–34. https://doi.org/10.1016/0167-7152(89)90127-2.

*Stochastic Ordinary and Stochastic Partial Differential Equations: Transition From Microscopic to Macroscopic Equations*. Springer Science & Business Media.

*Journal of Mathematical Analysis and Applications*63 (3): 772–800. https://doi.org/10.1016/0022-247X(78)90072-0.

*Journal of the Royal Statistical Society: Series B (Statistical Methodology)*73 (4): 423–98. https://doi.org/10.1111/j.1467-9868.2011.00777.x.

*Advances in Applied Probability*5 (3): 439–68. https://doi.org/10.2307/1425829.

*Journal of Mathematical Analysis and Applications*76 (1): 124–33. https://doi.org/10.1016/0022-247X(80)90066-9.

*Bernoulli*6 (3): 401–34. https://doi.org/10.2307/3318668.

*The Annals of Probability*25 (3): 1210–40. https://doi.org/10.1214/aop/1024404511.

*Biometrika*99 (3): 511–31. https://doi.org/10.1093/biomet/ass034.

*Notes on Stochastic Finance*.

*Stochastic Integration and Differential Equations*. Springer.

*The Winnower*, June. https://doi.org/10.15200/winn.155975.53637.

*Continuous Martingales and Brownian Motion*. Springer Science & Business Media. http://books.google.com?id=1ml95FLM5koC.

*Diffusions, Markov Processes, and Martingales*. 2nd ed. Cambridge Mathematical Library. Cambridge, U.K. ; New York: Cambridge University Press.

*Diffusions, Markov Processes and Martingales 2*. Cambridge University Press.

*Stochastic Analysis and Applications*22 (6): 1553–76. https://doi.org/10.1081/SAP-200029495.

*Applied Stochastic Differential Equations*. Institute of Mathematical Statistics Textbooks 10. Cambridge ; New York, NY: Cambridge University Press. https://users.aalto.fi/~ssarkka/pub/sde_book.pdf.

*Stochastic Processes and Orthogonal Polynomials*. Lecture Notes in Statistics. New York: Springer-Verlag. https://doi.org/10.1007/978-1-4612-1170-9.

*Stochastic Spatial Processes*. Springer.

*Numerical Methods for Stochastic Computations: A Spectral Method Approach*. USA: Princeton University Press. https://doi.org/10.2307/j.ctv7h0skv.

*Correlation Theory of Stationary and Related Random Functions. Volume II: Supplementary Notes and References*. Springer Series in Statistics. New York, NY: Springer Science & Business Media.

*Stochastic Differential Equations: An Introduction With Applications*. Springer.

*An Introduction to Maliavin Calculus with Applications to Economics*.