Applications of the famous Feynman-style path integral for quantum systems to non-quantum systems. Nothing to say here yet. Keywords: Onsager-Machlup.
References
Beretta, Gian Paolo. 2020. βThe Fourth Law of Thermodynamics: Steepest Entropy Ascent.β Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 378 (2170): 20190168.
Borgerding, Mark, and Philip Schniter. 2016. βOnsager-Corrected Deep Networks for Sparse Linear Inverse Problems.β arXiv:1612.01183 [Cs, Math], December.
Buzinov, M. S. 2017. βFeynman Formulas for Semigroups Generated by an Iterated Laplace Operator.β Russian Journal of Mathematical Physics 24 (2): 272β77.
Hasegawa, Yoshihiko, and Tan Van Vu. 2019. βUncertainty Relations in Stochastic Processes: An Information Inequality Approach.β Physical Review E 99 (6): 062126.
Li, Yang, Jinqiao Duan, and Xianbin Liu. 2021. βMachine Learning Framework for Computing the Most Probable Paths of Stochastic Dynamical Systems.β Physical Review E 103 (1): 012124.
Onsager, L., and S. Machlup. 1953. βFluctuations and Irreversible Processes.β Physical Review 91 (6): 1505β12.
Sethna, James P. 2006. Statistical Mechanics: Entropy, Order Parameters, and Complexity. Oxford University Press, USA.
Westbroek, Marise J. E., Peter R. King, Dimitri D. Vvedensky, and Stephan Durr. 2018. βUserβs Guide to Monte Carlo Methods for Evaluating Path Integrals.β American Journal of Physics 86 (4): 293β304.
Wio, Horacio S. 2013. Path Integrals for Stochastic Processes: An Introduction. WORLD SCIENTIFIC.
Zinn-Justin, Jean. 2009. βPath Integral.β Scholarpedia 4 (2): 8674.
No comments yet. Why not leave one?