Point processes



Another intermittent obsession, tentatively placemarked. Discrete-state random fields/processes with a continuous index. In general I also assume they are non-lattice and simple, which terms I will define if I need them.

The most interesting class for me are the branching processes.

I’ve just spent 6 months thinking about nothing else, so I won’t write much here.

There are comprehensive introductions. (Daley and Vere-Jones 2003, 2008; MΓΈller and Waagepetersen 2003)

A curious thing is that much point process estimation theory concerns estimating statistics from a single realisation of the point process. But in fact you may have many point process realisations. This is not news per se, just a new emphasis.

Temporal point processes

Sometimes including spatiotemporal point processes, depending on mood.

In these, one has an arrow of time which simplifies things because you know that you β€œonly need to consider the past of a process to understand its future”, which potentially simplifies many calculations about the conditional intensity processes; We consider only interactions from the past to the future, rather than some kind of mutual interaction.

In particular, for nice processes you can do fairly cheap likelihood calculations to estimate process parameters etc.

Using the regular point process representation of the probability density of the occurrences, we have the following joint log likelihood for all the occurrences

\[\begin{aligned} L_\theta(t_{1:N}) &:= -\int_0^T\lambda^*_\theta(t)dt + \int_0^T\log \lambda^*_\theta(t) dN_t\\ &= -\int_0^T\lambda^*_\theta(t)dt + \sum_{j} \log \lambda^*_\theta(t_j) \end{aligned}\]

I do a lot of this, for example, over at the branching processes notebook, and I have no use at the moment for other types of process, so I won’t say much about other cases for the moment.

See also change of time.

Spatial point processes

Processes without an arrow of time arise naturally, say as processes where you observe only snaphosts of the dynamics, or where whatever dynamics that gave rise to the process being too slow to be considered as anything but static (forests).

See spatial point processes.

References

Aalen, Odd. 1978. β€œNonparametric Inference for a Family of Counting Processes.” The Annals of Statistics 6 (4): 701–26.
Aalen, Odd O. 1989. β€œA Linear Regression Model for the Analysis of Life Times.” Statistics in Medicine 8 (8): 907–25.
Achab, Massil, Emmanuel Bacry, StΓ©phane GaΓ―ffas, Iacopo Mastromatteo, and Jean-Francois Muzy. 2017. β€œUncovering Causality from Multivariate Hawkes Integrated Cumulants.” In PMLR.
Adams, Ryan Prescott, Iain Murray, and David J. C. MacKay. 2009. β€œTractable Nonparametric Bayesian Inference in Poisson Processes with Gaussian Process Intensities.” In, 1–8. ACM Press.
Adelfio, Giada, and Frederic Paik Schoenberg. 2009. β€œPoint Process Diagnostics Based on Weighted Second-Order Statistics and Their Asymptotic Properties.” Annals of the Institute of Statistical Mathematics 61 (4): 929–48.
Andersen, Per Kragh, Ornulf Borgan, Richard D. Gill, and Niels Keiding. 1997. Statistical models based on counting processes. Corr. 2. print. Springer series in statistics. New York, NY: Springer.
Anselin, Luc, Jacqueline Cohen, David Cook, Wilpen Gorr, and George Tita. 2000. β€œSpatial Analyses of Crime.”
Arora, Sanjeev, Rong Ge, Tengyu Ma, and Ankur Moitra. 2015. β€œSimple, Efficient, and Neural Algorithms for Sparse Coding.” In Proceedings of The 28th Conference on Learning Theory, 40:113–49. Paris, France: PMLR.
Arribas-Gil, Ana, and Hans-Georg MΓΌller. 2014. β€œPairwise Dynamic Time Warping for Event Data.” Computational Statistics & Data Analysis 69 (January): 255–68.
Azizpour, Shariar, Kay Giesecke, et al. 2008. β€œSelf-Exciting Corporate Defaults: Contagion Vs.Β Frailty.” Stanford University working paper series.
Bacry, Emmanuel, Martin Bompaire, StΓ©phane GaΓ―ffas, and Jean-Francois Muzy. 2020. β€œSparse and Low-Rank Multivariate Hawkes Processes.” Journal of Machine Learning Research 21 (50): 1–32.
Bacry, Emmanuel, and Jean-FranΓ§ois Muzy. 2014. β€œHawkes Model for Price and Trades High-Frequency Dynamics.” Quantitative Finance 14 (7): 1147–66.
β€”β€”β€”. 2016. β€œFirst- and Second-Order Statistics Characterization of Hawkes Processes and Non-Parametric Estimation.” IEEE Transactions on Information Theory 62 (4): 2184–2202.
Baddeley, A. J., and Marie-Colette NM Van Lieshout. 1995. β€œArea-Interaction Point Processes.” Annals of the Institute of Statistical Mathematics 47 (4): 601–19.
Baddeley, A. J., Marie-Colette NM Van Lieshout, and J. MΓΈller. 1996. β€œMarkov Properties of Cluster Processes.” Advances in Applied Probability 28 (2): 346–55.
Baddeley, Adrian. 2007. β€œSpatial Point Processes and Their Applications.” In Stochastic Geometry, edited by Wolfgang Weil, 1–75. Lecture Notes in Mathematics 1892. Springer Berlin Heidelberg.
Baddeley, Adrian J, Jesper MΓΈller, and Rasmus Plenge Waagepetersen. 2000. β€œNon- and Semi-Parametric Estimation of Interaction in Inhomogeneous Point Patterns.” Statistica Neerlandica 54 (3): 329–50.
Baddeley, Adrian, Pablo Gregori, Jorge Mateu, Radu Stoica, and Dietrich Stoyan. 2006. Case Studies in Spatial Point Process Modeling. Vol. 185. Springer.
Baddeley, Adrian, and Jesper MΓΈller. 1989. β€œNearest-Neighbour Markov Point Processes and Random Sets.” International Statistical Review / Revue Internationale de Statistique 57 (2): 89–121.
Baddeley, Adrian, Jesper MΓΈller, and Anthony G. Pakes. 2008. β€œProperties of Residuals for Spatial Point Processes.” Annals of the Institute of Statistical Mathematics 60 (3): 627–49.
Baddeley, Adrian, and Rolf Turner. 2000. β€œPractical Maximum Pseudolikelihood for Spatial Point Patterns.” Australian & New Zealand Journal of Statistics 42 (3): 283–322.
β€”β€”β€”. 2006. β€œModelling Spatial Point Patterns in R.” In Case Studies in Spatial Point Process Modeling, edited by Adrian Baddeley, Pablo Gregori, Jorge Mateu, Radu Stoica, and Dietrich Stoyan, 23–74. Lecture Notes in Statistics 185. Springer New York.
Baddeley, A., R. Turner, J. MΓΈller, and M. Hazelton. 2005. β€œResidual Analysis for Spatial Point Processes (with Discussion).” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67 (5): 617–66.
Bai, Fangfang, Feng Chen, and Kani Chen. 2015. β€œSemiparametric Estimation of a Self-Exciting Regression Model with an Appication in Recurrent Event Data Analysis.” Statistica Sinica.
Barbieri, Riccardo, Michael C Quirk, Loren M Frank, Matthew A Wilson, and Emery N Brown. 2001. β€œConstruction and Analysis of Non-Poisson Stimulus-Response Models of Neural Spiking Activity.” Journal of Neuroscience Methods 105 (1): 25–37.
Barbour, A. D. n.d. β€œStein’s Method and Poisson Process Convergence.” Journal of Applied Probability 25 (A): 175–84.
Barbour, A.D., and T.C. Brown. 1992. β€œStein’s Method and Point Process Approximation.” Stochastic Processes and Their Applications 43 (1): 9–31.
Barron, A. R., and T. M. Cover. 1991. β€œMinimum Complexity Density Estimation.” IEEE Transactions on Information Theory 37 (4): 1034–54.
Basawa, Ishwar. 1980. Statistical Inference for Stochastic Processes. Academic Press.
Bashtannyk, David M., and Rob J. Hyndman. 2001. β€œBandwidth Selection for Kernel Conditional Density Estimation.” Computational Statistics & Data Analysis 36 (3): 279–98.
Bauwens, Luc, and Nikolaus Hautsch. 2006. β€œStochastic Conditional Intensity Processes.” Journal of Financial Econometrics 4 (3): 450–93.
Benichoux, Alexis, Emmanuel Vincent, and RΓ©mi Gribonval. 2013. β€œA Fundamental Pitfall in Blind Deconvolution with Sparse and Shift-Invariant Priors.” In ICASSP-38th International Conference on Acoustics, Speech, and Signal Processing-2013.
Berman, Mark, and Peter Diggle. 1989. β€œEstimating Weighted Integrals of the Second-Order Intensity of a Spatial Point Process.” Journal of the Royal Statistical Society. Series B (Methodological) 51 (1): 81–92.
Berman, Mark, and T. Rolf Turner. 1992. β€œApproximating Point Process Likelihoods with GLIM.” Journal of the Royal Statistical Society. Series C (Applied Statistics) 41 (1): 31–38.
Besag, Julian. 1977. β€œEfficiency of Pseudolikelihood Estimation for Simple Gaussian Fields.” Biometrika 64 (3): 616–18.
Bowsher, Clive G. 2007. β€œModelling Security Market Events in Continuous Time: Intensity Based, Multivariate Point Process Models.” Journal of Econometrics 141 (2): 876–912.
BrΓ©maud, Pierre. 1972. β€œA Martingale Approach to Point Processes.” University of California, Berkeley.
BrΓ©maud, Pierre, Laurent MassouliΓ©, and Andrea Ridolfi. 2005. β€œPower Spectra of Random Spike Fields and Related Processes.” Advances in Applied Probability 37 (4): 1116–46.
BrΓ©maud, P., and L. MassouliΓ©. 2002. β€œPower Spectra of General Shot Noises and Hawkes Point Processes with a Random Excitation.” Advances in Applied Probability 34 (1): 205–22.
Brix, Anders, and Wilfrid S. Kendall. 2002. β€œSimulation of Cluster Point Processes Without Edge Effects.” Advances in Applied Probability 34 (2): 267–80.
Brown, Lawrence D., T. Tony Cai, and Harrison H. Zhou. 2010. β€œNonparametric Regression in Exponential Families.” The Annals of Statistics 38 (4): 2005–46.
Buckley, M. J., G. K. Eagleson, and B. W. Silverman. 1988. β€œThe Estimation of Residual Variance in Nonparametric Regression.” Biometrika 75 (2): 189–99.
Chang, C., and F. P. Schoenberg. 2008. β€œTesting Separability in Multi-Dimensional Point Processes with Covariates.” Annals of the Institute of Statistical Mathematics.
Chang, Yi-Ping. 2001. β€œEstimation of Parameters for Nonhomogeneous Poisson Process: Software Reliability with Change-Point Model.” Communications in Statistics - Simulation and Computation 30 (3): 623–35.
Chaudhuri, Probal. 1991. β€œNonparametric Estimates of Regression Quantiles and Their Local Bahadur Representation.” The Annals of Statistics 19 (2): 760–77.
Chen, Feng, and Peter Hall. 2013. β€œInference for a Nonstationary Self-Exciting Point Process with an Application in Ultra-High Frequency Financial Data Modeling.” Journal of Applied Probability 50 (4): 1006–24.
Chen, Feng, Richard M. Huggins, Paul S. F. Yip, and K. F. Lam. 2008. β€œLocal Polynomial Estimation of Poisson Intensities in the Presence of Reporting Delays.” Journal of the Royal Statistical Society: Series C (Applied Statistics) 57 (4): 447–59.
Chen, Feng, and Tom Stindl. 2017. β€œDirect Likelihood Evaluation for the Renewal Hawkes Process.” Journal of Computational and Graphical Statistics 27 (1): 1–13.
Chen, Feng, Paul S. F. Yip, and K. F. Lam. 2011. β€œOn the Local Polynomial Estimators of the Counting Process Intensity Function and Its Derivatives.” Scandinavian Journal of Statistics 38 (4): 631–49.
Chen, Louis H. Y., and Aihua Xia. 2011. β€œPoisson Process Approximation for Dependent Superposition of Point Processes.” Bernoulli 17 (2): 530–44.
Cheng, Tao, and Thomas Wicks. 2014. β€œEvent Detection Using Twitter: A Spatio-Temporal Approach.” PLoS ONE 9 (6): e97807.
Chilinski, Pawel, and Ricardo Silva. 2020. β€œNeural Likelihoods via Cumulative Distribution Functions.” arXiv:1811.00974 [Cs, Stat], June.
Claeskens, Gerda, Tatyana Krivobokova, and Jean D. Opsomer. 2009. β€œAsymptotic Properties of Penalized Spline Estimators.” Biometrika 96 (3): 529–44.
Cox, D. R. 1965. β€œOn the Estimation of the Intensity Function of a Stationary Point Process.” Journal of the Royal Statistical Society: Series B (Methodological) 27 (2): 332–37.
Cox, Dennis D., and Finbarr O’Sullivan. 1990. β€œAsymptotic Analysis of Penalized Likelihood and Related Estimators.” The Annals of Statistics 18 (4): 1676–95.
Crisan, Dan, and JoaquΓ­n MΓ­guez. 2014. β€œParticle-Kernel Estimation of the Filter Density in State-Space Models.” Bernoulli 20 (4): 1879–929.
Cronie, O., and M. N. M. van Lieshout. 2016. β€œBandwidth Selection for Kernel Estimators of the Spatial Intensity Function.” arXiv:1611.10221 [Stat], November.
Cucala, Lionel. 2008. β€œIntensity Estimation for Spatial Point Processes Observed with Noise.” Scandinavian Journal of Statistics 35 (2): 322–34.
Cui, Yunwei, and Robert Lund. 2009. β€œA New Look at Time Series of Counts.” Biometrika 96 (4): 781–92.
Cunningham, John P., Krishna V. Shenoy, and Maneesh Sahani. 2008. β€œFast Gaussian Process Methods for Point Process Intensity Estimation.” In Proceedings of the 25th International Conference on Machine Learning, 192–99. ICML ’08. New York, NY, USA: ACM Press.
Dahlhaus, Rainer, and Michael Eichler. 2003. β€œCausality and Graphical Models in Time Series Analysis.” Oxford Statistical Science Series, 115–37.
Dahlhaus, Rainer, and Wolfgang Polonik. 2009. β€œEmpirical Spectral Processes for Locally Stationary Time Series.” Bernoulli 15 (1): 1–39.
Daley, Daryl J., and David Vere-Jones. 2003. An introduction to the theory of point processes. 2nd ed. Vol. 1. Elementary theory and methods. New York: Springer.
β€”β€”β€”. 2008. An Introduction to the Theory of Point Processes. 2nd ed. Vol. 2. General theory and structure. Probability and Its Applications. New York: Springer.
Daneshmand, Hadi, Manuel Gomez-Rodriguez, Le Song, and Bernhard SchΓΆlkopf. 2014. β€œEstimating Diffusion Network Structures: Recovery Conditions, Sample Complexity & Soft-Thresholding Algorithm.” In ICML.
Das, Sanjiv R., Darrell Duffie, Nikunj Kapadia, and Leandro Saita. 2007. β€œCommon Failings: How Corporate Defaults Are Correlated.” The Journal of Finance 62 (1): 93–117.
Diaconis, Persi, and David Freedman. 1984. β€œAsymptotics of Graphical Projection Pursuit.” The Annals of Statistics 12 (3): 793–815.
DΓ­az-Avalos, Carlos, P. Juan, and J. Mateu. 2012. β€œSimilarity Measures of Conditional Intensity Functions to Test Separability in Multidimensional Point Processes.” Stochastic Environmental Research and Risk Assessment 27 (5): 1193–1205.
Diggle, Peter. 1985. β€œA Kernel Method for Smoothing Point Process Data.” Journal of the Royal Statistical Society. Series C (Applied Statistics) 34 (2): 138–47.
Diggle, Peter J. 1979. β€œOn Parameter Estimation and Goodness-of-Fit Testing for Spatial Point Patterns.” Biometrics 35 (1): 87–101.
Drovandi, Christopher C., Anthony N. Pettitt, and Roy A. McCutchan. 2016. β€œExact and Approximate Bayesian Inference for Low Integer-Valued Time Series Models with Intractable Likelihoods.” Bayesian Analysis 11 (2): 325–52.
Eden, U, L Frank, R Barbieri, V Solo, and E Brown. 2004. β€œDynamic Analysis of Neural Encoding by Point Process Adaptive Filtering.” Neural Computation 16 (5): 971–98.
Eichler, Michael, Rainer Dahlhaus, and Johannes Dueck. 2016. β€œGraphical Modeling for Multivariate Hawkes Processes with Nonparametric Link Functions.” Journal of Time Series Analysis, January, n/a–.
Ellis, Steven P. 1991. β€œDensity Estimation for Point Processes.” Stochastic Processes and Their Applications 39 (2): 345–58.
Embrechts, Paul, Thomas Liniger, and Lu Lin. 2011. β€œMultivariate Hawkes Processes: An Application to Financial Data.” Journal of Applied Probability 48A (August): 367–78.
Fan, Jianqing, and Runze Li. 2001. β€œVariable Selection via Nonconcave Penalized Likelihood and Its Oracle Properties.” Journal of the American Statistical Association 96 (456): 1348–60.
Fatalov, V. R. 2012. β€œIntegral Functionals for the Exponential of the Wiener Process and the Brownian Bridge: Exact Asymptotics and Legendre Functions.” Mathematical Notes 92 (1-2): 79–98.
Feigin, Paul David. 1976. β€œMaximum Likelihood Estimation for Continuous-Time Stochastic Processes.” Advances in Applied Probability 8 (4): 712–36.
Filimonov, Vladimir, and Didier Sornette. 2013. β€œApparent Criticality and Calibration Issues in the Hawkes Self-Excited Point Process Model: Application to High-Frequency Financial Data.” SSRN Scholarly Paper ID 2371284. Rochester, NY: Social Science Research Network.
Flaxman, Seth, Yee Whye Teh, and Dino Sejdinovic. 2016. β€œPoisson Intensity Estimation with Reproducing Kernels.” arXiv:1610.08623 [Stat], October.
GaΓ―ffas, StΓ©phane, and Agathe Guilloux. 2012. β€œHigh-Dimensional Additive Hazards Models and the Lasso.” Electronic Journal of Statistics 6: 522–46.
Geer, Sara van de. 1995. β€œExponential Inequalities for Martingales, with Application to Maximum Likelihood Estimation for Counting Processes.” The Annals of Statistics 23 (5): 1779–1801.
Geer, Sara van de, Peter BΓΌhlmann, Ya’acov Ritov, and Ruben Dezeure. 2014. β€œOn Asymptotically Optimal Confidence Regions and Tests for High-Dimensional Models.” The Annals of Statistics 42 (3): 1166–1202.
Geyer, Charles J., and Jesper MΓΈller. 1994. β€œSimulation Procedures and Likelihood Inference for Spatial Point Processes.” Scandinavian Journal of Statistics, 359–73.
Giesecke, Kay, and Gustavo Schwenkler. 2011. β€œFiltered Likelihood for Point Processes.” SSRN Scholarly Paper ID 1898344. Rochester, NY: Social Science Research Network.
Giesecke, K., H. Kakavand, and M. Mousavi. 2008. β€œSimulating Point Processes by Intensity Projection.” In Simulation Conference, 2008. WSC 2008. Winter, 560–68.
β€”β€”β€”. 2011. β€œExact Simulation of Point Processes with Stochastic Intensities.” Operations Research 59 (5): 1233–45.
Goulard, Michel, Aila SΓ€rkkΓ€, and Pavel Grabarnik. 1996. β€œParameter Estimation for Marked Gibbs Point Processes Through the Maximum Pseudo-Likelihood Method.” Scandinavian Journal of Statistics, 365–79.
Green, Peter J. 1987. β€œPenalized Likelihood for General Semi-Parametric Regression Models.” International Statistical Review / Revue Internationale de Statistique 55 (3): 245–59.
Guan, Yongtao. 2008a. β€œVariance Estimation for Statistics Computed from Inhomogeneous Spatial Point Processes.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 70 (1): 175–90.
β€”β€”β€”. 2008b. β€œA Goodness-of-Fit Test for Inhomogeneous Spatial Poisson Processes.” Biometrika 95 (4): 831–45.
Guan, Yongtao, and Michael Sherman. 2007. β€œOn Least Squares Fitting for Stationary Spatial Point Processes.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 69 (1): 31–49.
Gui, Jiang, and Hongzhe Li. 2005. β€œPenalized Cox Regression Analysis in the High-Dimensional and Low-Sample Size Settings, with Applications to Microarray Gene Expression Data.” Bioinformatics 21 (13): 3001–8.
HΓ€ggstrΓΆm, Olle, Marie-Colette N. M. van Lieshout, and Jesper MΓΈller. 1999. β€œCharacterization Results and Markov Chain Monte Carlo Algorithms Including Exact Simulation for Some Spatial Point Processes.” Bernoulli 5 (4): 641–58.
Hansen, Niels Richard. 2010. β€œPenalized Maximum Likelihood Estimation for Generalized Linear Point Processes.” arXiv:1003.0848 [Math, Stat], March.
Hansen, Niels Richard, Patricia Reynaud-Bouret, and Vincent Rivoirard. 2015. β€œLasso and Probabilistic Inequalities for Multivariate Point Processes.” Bernoulli 21 (1): 83–143.
Hardiman, Stephen J., and Jean-Philippe Bouchaud. 2014. β€œBranching-Ratio Approximation for the Self-Exciting Hawkes Process.” Physical Review E 90 (6): 062807.
Harte, David. 2010. β€œPtProcess: An R Package for Modelling Marked Point Processes Indexed by Time.” Journal of Statistical Software 35 (8): 1–32.
Haslinger, Robert, Gordon Pipa, and Emery Brown. 2010. β€œDiscrete Time Rescaling Theorem: Determining Goodness of Fit for Discrete Time Statistical Models of Neural Spiking.” Neural Computation 22 (10): 2477–2506.
Hawe, S., M. Kleinsteuber, and K. Diepold. 2013. β€œAnalysis Operator Learning and Its Application to Image Reconstruction.” IEEE Transactions on Image Processing 22 (6): 2138–50.
Hawkes, Alan G. 1971a. β€œPoint Spectra of Some Mutually Exciting Point Processes.” Journal of the Royal Statistical Society. Series B (Methodological) 33 (3): 438–43.
β€”β€”β€”. 1971b. β€œSpectra of Some Self-Exciting and Mutually Exciting Point Processes.” Biometrika 58 (1): 83–90.
Helmers, Roelof, and I. Wayan Mangku. 1999. β€œStatistical Estimation of Poisson Intensity Functions.” ANN. INST. STAT. MATH 51: 265–80.
Hosmer, David W. 2011. Applied Survival Analysis: Regression Modeling of Time-To-Event Data. Wiley-Interscience.
Huang, Fuchun, and Yosihiko Ogata. 1999. β€œImprovements of the Maximum Pseudo-Likelihood Estimators in Various Spatial Statistical Models.” Journal of Computational and Graphical Statistics 8 (3): 510–30.
Hurvich, Clifford M., Jeffrey S. Simonoff, and Chih-Ling Tsai. 1998. β€œSmoothing Parameter Selection in Nonparametric Regression Using an Improved Akaike Information Criterion.” Journal of the Royal Statistical Society. Series B (Statistical Methodology) 60 (2): 271–93.
Iribarren, JosΓ© Luis, and Esteban Moro. 2011. β€œBranching Dynamics of Viral Information Spreading.” Physical Review E 84 (4): 046116.
Jensen, Jens Ledet, and Hans R. KΓΌnsch. 1994. β€œOn Asymptotic Normality of Pseudo Likelihood Estimates for Pairwise Interaction Processes.” Annals of the Institute of Statistical Mathematics 46 (3): 475–86.
Jensen, Jens Ledet, and Jesper MΓΈller. 1991. β€œPseudolikelihood for Exponential Family Models of Spatial Point Processes.” The Annals of Applied Probability 1 (3): 445–61.
JovanoviΔ‡, Stojan, John Hertz, and Stefan Rotter. 2015. β€œCumulants of Hawkes Point Processes.” Physical Review E 91 (4): 042802.
Juban, JΓ©rΓ©mie, Lionel Fugon, and Georges Kariniotakis. 2007. β€œProbabilistic Short-Term Wind Power Forecasting Based on Kernel Density Estimators.” In.
Karr, Alan F. 1986. Point Processes and Their Statistical Inference. New York: Marcel Dekker Inc.
Kass, Robert E., Shun-Ichi Amari, Kensuke Arai, Emery N. Brown, Casey O. Diekman, Markus Diesmann, Brent Doiron, et al. 2018. β€œComputational Neuroscience: Mathematical and Statistical Perspectives.” Annual Review of Statistics and Its Application 5 (1): 183–214.
Koenker, Roger, and Kevin F. Hallock. 2001. β€œQuantile Regression.” The Journal of Economic Perspectives 15 (4): 143–56.
Koenker, Roger, and JosΓ© A. F. Machado. 1999. β€œGoodness of Fit and Related Inference Processes for Quantile Regression.” Journal of the American Statistical Association 94 (448): 1296–1310.
Koenker, Roger, and Ivan Mizera. 2006. β€œDensity Estimation by Total Variation Regularization.” Advances in Statistical Modeling and Inference, 613–34.
Konishi, Sadanori, and Genshiro Kitagawa. 1996. β€œGeneralised Information Criteria in Model Selection.” Biometrika 83 (4): 875–90.
Kroese, Dirk P., and Zdravko I. Botev. 2013. β€œSpatial Process Generation.” arXiv:1308.0399 [Stat], August.
Kroll, Martin. 2016. β€œConcentration Inequalities for Poisson Point Processes with Application to Adaptive Intensity Estimation.” arXiv:1612.07901 [Math, Stat], December.
KvitkovičovΓ‘, Andrea, and Victor M. Panaretos. 2011. β€œAsymptotic Inference for Partially Observed Branching Processes.” Advances in Applied Probability 43 (4): 1166–90.
KwieciΕ„ski, Andrzej, and Ryszard Szekli. 1996. β€œSome Monotonicity and Dependence Properties of Self-Exciting Point Processes.” The Annals of Applied Probability 6 (4): 1211–31.
Lewis, Erik, George Mohler, P. Jeffrey Brantingham, and Andrea L. Bertozzi. 2012. β€œSelf-Exciting Point Process Models of Civilian Deaths in Iraq.” Security Journal 25 (3): 244–64.
Lieshout, Marie-Colette N. M. van. 2011. β€œOn Estimation of the Intensity Function of a Point Process.” Methodology and Computing in Applied Probability 14 (3): 567–78.
Lieshout, Marie-Colette NM van. 2000. Markov Point Processes and Their Applications. London: Imperial College Press.
Lindsey, J. K. 1995. β€œFitting Parametric Counting Processes by Using Log-Linear Models.” Journal of the Royal Statistical Society. Series C (Applied Statistics) 44 (2): 201–12.
Mairal, Julien, Francis Bach, Jean Ponce, and Guillermo Sapiro. 2009. β€œOnline Dictionary Learning for Sparse Coding.” In Proceedings of the 26th Annual International Conference on Machine Learning, 689–96. ICML ’09. New York, NY, USA: ACM.
Marcus, Gary, Adam Marblestone, and Thomas Dean. 2014. β€œThe atoms of neural computation.” Science 346 (6209): 551–52.
Martin, James S., Ajay Jasra, and Emma McCoy. 2013. β€œInference for a Class of Partially Observed Point Process Models.” Annals of the Institute of Statistical Mathematics 65 (3): 413–37.
Marzen, S. E., and J. P. Crutchfield. 2020. β€œInference, Prediction, and Entropy-Rate Estimation of Continuous-Time, Discrete-Event Processes.” arXiv:2005.03750 [Cond-Mat, Physics:nlin, Stat], May.
Matsumoto, Hiroyuki, and Marc Yor. 2005. β€œExponential Functionals of Brownian Motion, I: Probability Laws at Fixed Time.” Probability Surveys 2: 312–47.
McCullagh, Peter, and Jesper MΓΈller. 2006. β€œThe Permanental Process.” Advances in Applied Probability 38 (4): 873–88.
Micchelli, Charles A., and Peder Olsen. 2000. β€œPenalized Maximum-Likelihood Estimation, the Baum–Welch Algorithm, Diagonal Balancing of Symmetric Matrices and Applications to Training Acoustic Data.” Journal of Computational and Applied Mathematics 119 (1–2): 301–31.
Mishra, Swapnil, Marian-Andrei Rizoiu, and Lexing Xie. 2016. β€œFeature Driven and Point Process Approaches for Popularity Prediction.” In Proceedings of the 25th ACM International Conference on Information and Knowledge Management, 1069–78. CIKM ’16. New York, NY, USA: ACM.
Mohler, G. O., M. B. Short, P. J. Brantingham, F. P. Schoenberg, and G. E. Tita. 2011. β€œSelf-Exciting Point Process Modeling of Crime.” Journal of the American Statistical Association 106 (493): 100–108.
MΓΈller, Jesper, and Kasper K. Berthelsen. 2012. β€œTransforming Spatial Point Processes into Poisson Processes Using Random Superposition.” Advances in Applied Probability 44 (1): 42–62.
MΓΈller, Jesper, and Jakob G. Rasmussen. 2006. β€œApproximate Simulation of Hawkes Processes.” Methodology and Computing in Applied Probability 8 (1): 53–64.
MΓΈller, Jesper, and Rasmus Waagepetersen. 2017. β€œSome Recent Developments in Statistics for Spatial Point Patterns.” Annual Review of Statistics and Its Application 4 (1): 317–42.
MΓΈller, Jesper, and Rasmus Plenge Waagepetersen. 2003. Statistical Inference and Simulation for Spatial Point Processes. Chapman and Hall/CRC.
β€”β€”β€”. 2007. β€œModern Statistics for Spatial Point Processes.” Scandinavian Journal of Statistics 34 (4): 643–84.
Morimoto, Tetsuzo. 1963. β€œMarkov Processes and the H-Theorem.” Journal of the Physical Society of Japan 18 (3): 328–31.
Neustifter, Benjamin, Stephen L. Rathbun, and Saul Shiffman. 2012. β€œMixed-Poisson Point Process with Partially-Observed Covariates: Ecological Momentary Assessment of Smoking.” Journal of Applied Statistics 39 (4): 883–99.
Oakes, David. 1975. β€œThe Markovian Self-Exciting Process.” Journal of Applied Probability 12 (1): 69.
Ogata, Y. 1981. β€œOn Lewis’ Simulation Method for Point Processes.” IEEE Transactions on Information Theory 27 (1): 23–31.
β€”β€”β€”. 1999. β€œSeismicity Analysis Through Point-Process Modeling: A Review.” Pure and Applied Geophysics 155 (2-4): 471–507.
Ogata, Yoshiko. 1978. β€œThe Asymptotic Behaviour of Maximum Likelihood Estimators for Stationary Point Processes.” Annals of the Institute of Statistical Mathematics 30 (1): 243–61.
Ogata, Yosihiko. 1988. β€œStatistical Models for Earthquake Occurrences and Residual Analysis for Point Processes.” Journal of the American Statistical Association 83 (401): 9–27.
Ogata, Yosihiko, and Hirotugu Akaike. 1982. β€œOn Linear Intensity Models for Mixed Doubly Stochastic Poisson and Self-Exciting Point Processes.” Journal of the Royal Statistical Society, Series B 44: 269–74.
Ogata, Yosihiko, Ritsuko S. Matsu’ura, and Koichi Katsura. 1993. β€œFast Likelihood Computation of Epidemic Type Aftershock-Sequence Model.” Geophysical Research Letters 20 (19): 2143–46.
Olshausen, B. A., and D. J. Field. 1996. β€œNatural image statistics and efficient coding.” Network (Bristol, England) 7 (2): 333–39.
Omi, Takahiro, Naonori Ueda, and Kazuyuki Aihara. 2020. β€œFully Neural Network Based Model for General Temporal Point Processes.” arXiv:1905.09690 [Cs, Stat], January.
Ozaki, T. 1979. β€œMaximum Likelihood Estimation of Hawkes’ Self-Exciting Point Processes.” Annals of the Institute of Statistical Mathematics 31 (1): 145–55.
Panaretos, Victor M., and Yoav Zemel. 2016. β€œSeparation of Amplitude and Phase Variation in Point Processes.” The Annals of Statistics 44 (2): 771–812.
Paninski, Liam. 2004. β€œMaximum Likelihood Estimation of Cascade Point-Process Neural Encoding Models.” Network: Computation in Neural Systems 15 (4): 243–62.
Pnevmatikakis, Eftychios A. 2017. β€œCompressed Sensing and Optimal Denoising of Monotone Signals.” In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 4740–44.
Pouget-Abadie, Jean, and Thibaut Horel. 2015. β€œInferring Graphs from Cascades: A Sparse Recovery Framework.” In Proceedings of The 32nd International Conference on Machine Learning.
Puri, Madan L., and Pham D. Tuan. 1986. β€œMaximum Likelihood Estimation for Stationary Point Processes.” Proceedings of the National Academy of Sciences of the United States of America 83 (3): 541–45.
Rasmussen, Jakob G. 2011. β€œTemporal Point Processes the Conditional Intensity Function.”
Rasmussen, Jakob Gulddahl. 2013. β€œBayesian Inference for Hawkes Processes.” Methodology and Computing in Applied Probability 15 (3): 623–42.
Rasmussen, Jakob Gulddahl, Jesper MΓΈller, B. H. Aukema, K. F. Raffa, and J. Zhu. 2006. β€œBayesian Inference for Multivariate Point Processes Observed at Sparsely Distributed Times.” Department of Mathematical Sciences, Aalborg University.
Ravanbakhsh, Siamak, Jeff Schneider, and Barnabas Poczos. 2016. β€œDeep Learning with Sets and Point Clouds.” In arXiv:1611.04500 [Cs, Stat].
Reynaud-Bouret, Patricia. 2003. β€œAdaptive Estimation of the Intensity of Inhomogeneous Poisson Processes via Concentration Inequalities.” Probability Theory and Related Fields 126 (1).
Reynaud-Bouret, Patricia, Vincent Rivoirard, Franck Grammont, and Christine Tuleau-Malot. 2014. β€œGoodness-of-Fit Tests and Nonparametric Adaptive Estimation for Spike Train Analysis.” The Journal of Mathematical Neuroscience 4 (1): 3.
Reynaud-Bouret, Patricia, and Emmanuel Roy. 2007. β€œSome Non Asymptotic Tail Estimates for Hawkes Processes.” Bulletin of the Belgian Mathematical Society - Simon Stevin 13 (5): 883–96.
Reynaud-Bouret, Patricia, and Sophie Schbath. 2010. β€œAdaptive Estimation for Hawkes Processes; Application to Genome Analysis.” The Annals of Statistics 38 (5): 2781–2822.
Riabiz, Marina, Tohid Ardeshiri, and Simon Godsill. 2016. β€œA Central Limit Theorem with Application to Inference in Ξ±-Stable Regression Models.” In, 70–82.
Ridolfi, Andrea. 2005. β€œPower Spectra of Random Spikes and Related Complex Signals.” Institut de systΓ¨mes de communication SECTION DES SYSTÈMES DE COMMUNICATION POUR L’OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES PAR laurea di dottore in ingegneria elettronica, Politecnico di Milano.
Ripley, B. D., and F. P. Kelly. 1977. β€œMarkov Point Processes.” Journal of the London Mathematical Society s2-15 (1): 188–92.
Rizoiu, Marian-Andrei, Lexing Xie, Scott Sanner, Manuel Cebrian, Honglin Yu, and Pascal Van Hentenryck. 2017. β€œExpecting to Be HIP: Hawkes Intensity Processes for Social Media Popularity.” In World Wide Web 2017, International Conference on, 1–9. WWW ’17. Perth, Australia: International World Wide Web Conferences Steering Committee.
Rosser, G., and T. Cheng. 2014. β€œA Self-Exciting Point Process Model for Predictive Policing: Implementation and Evaluation.”
Rubin, Izhak. 1972. β€œRegular Point Processes and Their Detection.” IEEE Transactions on Information Theory 18 (5): 547–57.
Saichev, A., and D. Sornette. 2011. β€œGenerating Functions and Stability Study of Multivariate Self-Excited Epidemic Processes.” arXiv:1101.5564 [Cond-Mat, Physics:physics], January.
Schelldorfer, JΓΌrg, Lukas Meier, and Peter BΓΌhlmann. 2014. β€œGLMMLasso: An Algorithm for High-Dimensional Generalized Linear Mixed Models Using β„“1-Penalization.” Journal of Computational and Graphical Statistics 23 (2): 460–77.
Schoenberg, Frederic. 1999. β€œTransforming Spatial Point Processes into Poisson Processes.” Stochastic Processes and Their Applications 81 (2): 155–64.
Schoenberg, Frederic Paik. 2002. β€œOn Rescaled Poisson Processes and the Brownian Bridge.” Annals of the Institute of Statistical Mathematics 54 (2): 445–57.
β€”β€”β€”. 2004. β€œTesting Separability in Spatial-Temporal Marked Point Processes.” Biometrics 60 (2): 471–81.
β€”β€”β€”. 2005. β€œConsistent Parametric Estimation of the Intensity of a Spatial–Temporal Point Process.” Journal of Statistical Planning and Inference 128 (1): 79–93.
Sevast’yanov, B. A. 1968. β€œRenewal Equations and Moments of Branching Processes.” Mathematical Notes of the Academy of Sciences of the USSR 3 (1): 3–10.
Silverman, B. W. 1982. β€œOn the Estimation of a Probability Density Function by the Maximum Penalized Likelihood Method.” The Annals of Statistics 10 (3): 795–810.
β€”β€”β€”. 1984. β€œSpline Smoothing: The Equivalent Variable Kernel Method.” The Annals of Statistics 12 (3): 898–916.
Simon, Noah, Jerome Friedman, Trevor Hastie, and Rob Tibshirani. 2011. β€œRegularization Paths for Cox’s Proportional Hazards Model via Coordinate Descent.” Journal of Statistical Software 39 (5).
Simpson, Daniel, Janine Illian, Finn Lindgren, Sigrunn SΓΈrbye, and HΓ₯vard Rue. 2011. β€œGoing Off Grid: Computationally Efficient Inference for Log-Gaussian Cox Processes.” arXiv:1111.0641 [Math, Stat], November.
Smith, A, and E Brown. 2003. β€œEstimating a State-Space Model from Point Process Observations.” Neural Computation 15 (5): 965–91.
StΓ€dler, Nicolas, and Sach Mukherjee. 2013. β€œPenalized Estimation in High-Dimensional Hidden Markov Models with State-Specific Graphical Models.” The Annals of Applied Statistics 7 (4): 2157–79.
Stefanski, Leonard A., and Raymond J. Carroll. 1990. β€œDeconvolving Kernel Density Estimators.” Statistics 21 (2): 169–84.
Thrampoulidis, Chrtistos, Ehsan Abbasi, and Babak Hassibi. 2015. β€œLASSO with Non-Linear Measurements Is Equivalent to One With Linear Measurements.” In Advances in Neural Information Processing Systems 28, edited by C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, R. Garnett, and R. Garnett, 3402–10. Curran Associates, Inc.
Tria, F., V. Loreto, V. D. P. Servedio, and S. H. Strogatz. 2013. β€œThe Dynamics of Correlated Novelties.” arXiv:1310.1953 [Physics] 4 (October).
Turlach, Berwin A. 1993. β€œBandwidth Selection in Kernel Density Estimation: A Review.”
Vacarescu. 2011. Filtering and Parameter Estimation for Partially Observed Point Processes.
Veen, Alejandro, and Frederic P Schoenberg. 2008. β€œEstimation of Space–Time Branching Process Models in Seismology Using an EM–Type Algorithm.” Journal of the American Statistical Association 103 (482): 614–24.
Vere-Jones, David, and Frederic Paik Schoenberg. 2004. β€œRescaling Marked Point Processes.” Australian & New Zealand Journal of Statistics 46 (1): 133–43.
Wheatley, Spencer. 2013. β€œQuantifying Endogeneity in Market Prices with Point Processes: Methods & Applications.” Masters Thesis. ETH ZΓΌrich.
Willett, R. M., and R. D. Nowak. 2007. β€œMultiscale Poisson Intensity and Density Estimation.” IEEE Transactions on Information Theory 53 (9): 3171–87.
Witten, Daniela M., Robert Tibshirani, and Trevor Hastie. 2009. β€œA Penalized Matrix Decomposition, with Applications to Sparse Principal Components and Canonical Correlation Analysis.” Biostatistics, January, kxp008.
WΓΆrmann, Julian, Simon Hawe, and Martin Kleinsteuber. 2013. β€œAnalysis Based Blind Compressive Sensing.” IEEE Signal Processing Letters 20 (5): 491–94.
Wu, Shuang, Hans-Georg MΓΌller, and Zhen Zhang. 2013. β€œFunctional Data Analysis for Point Processes with Rare Events.” Statistica Sinica 23 (1): 1–23.
Zarezade, Ali, Utkarsh Upadhyay, Hamid R. Rabiee, and Manuel Gomez-Rodriguez. 2017. β€œRedQueen: An Online Algorithm for Smart Broadcasting in Social Networks.” In Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, 51–60. WSDM ’17. New York, NY, USA: ACM Press.
Zhang, Cun-Hui, and Stephanie S. Zhang. 2014. β€œConfidence Intervals for Low Dimensional Parameters in High Dimensional Linear Models.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 76 (1): 217–42.
Zhang, Rui, Christian Walder, and Marian-Andrei Rizoiu. 2020. β€œVariational Inference for Sparse Gaussian Process Modulated Hawkes Process.” In Proceedings of the AAAI Conference on Artificial Intelligence, 34:6803–10.
Zhou, Ke, Hongyuan Zha, and Le Song. 2013. β€œLearning Triggering Kernels for Multi-Dimensional Hawkes Processes.” In Proceedings of the 30th International Conference on Machine Learning (ICML-13), 1301–9.

No comments yet. Why not leave one?

GitHub-flavored Markdown & a sane subset of HTML is supported.