Aalen, Odd O. 1978.
βNonparametric Inference for a Family of Counting Processes.β The Annals of Statistics 6 (4): 701β26.
Aalen, Odd O. 1989.
βA Linear Regression Model for the Analysis of Life Times.β Statistics in Medicine 8 (8): 907β25.
Achab, Massil, Emmanuel Bacry, StΓ©phane GaΓ―ffas, Iacopo Mastromatteo, and Jean-Francois Muzy. 2017.
βUncovering Causality from Multivariate Hawkes Integrated Cumulants.β In
PMLR.
Adelfio, Giada, and Frederic Paik Schoenberg. 2009.
βPoint Process Diagnostics Based on Weighted Second-Order Statistics and Their Asymptotic Properties.β Annals of the Institute of Statistical Mathematics 61 (4): 929β48.
Andersen, Per Kragh, Ornulf Borgan, Richard D. Gill, and Niels Keiding. 1997. Statistical models based on counting processes. Corr. 2. print. Springer series in statistics. New York, NY: Springer.
Anselin, Luc, Jacqueline Cohen, David Cook, Wilpen Gorr, and George Tita. 2000.
βSpatial Analyses of Crime.βArora, Sanjeev, Rong Ge, Tengyu Ma, and Ankur Moitra. 2015.
βSimple, Efficient, and Neural Algorithms for Sparse Coding.β In
Proceedings of The 28th Conference on Learning Theory, 40:113β49. Paris, France: PMLR.
Arribas-Gil, Ana, and Hans-Georg MΓΌller. 2014.
βPairwise Dynamic Time Warping for Event Data.β Computational Statistics & Data Analysis 69 (January): 255β68.
Azizpour, Shariar, Kay Giesecke, et al. 2008.
βSelf-Exciting Corporate Defaults: Contagion Vs.Β Frailty.β Stanford University working paper series.
Bacry, Emmanuel, Martin Bompaire, StΓ©phane GaΓ―ffas, and Jean-Francois Muzy. 2020.
βSparse and Low-Rank Multivariate Hawkes Processes.β Journal of Machine Learning Research 21 (50): 1β32.
Bacry, Emmanuel, and Jean-FranΓ§ois Muzy. 2014.
βHawkes Model for Price and Trades High-Frequency Dynamics.β Quantitative Finance 14 (7): 1147β66.
Baddeley, A. J., and Marie-Colette NM Van Lieshout. 1995.
βArea-Interaction Point Processes.β Annals of the Institute of Statistical Mathematics 47 (4): 601β19.
Baddeley, A. J., Marie-Colette NM Van Lieshout, and J. MΓΈller. 1996.
βMarkov Properties of Cluster Processes.β Advances in Applied Probability 28 (2): 346β55.
Baddeley, Adrian. 2007.
βSpatial Point Processes and Their Applications.β In
Stochastic Geometry, edited by Wolfgang Weil, 1β75. Lecture Notes in Mathematics 1892. Springer Berlin Heidelberg.
Baddeley, Adrian J, Jesper MΓΈller, and Rasmus Plenge Waagepetersen. 2000.
βNon- and Semi-Parametric Estimation of Interaction in Inhomogeneous Point Patterns.β Statistica Neerlandica 54 (3): 329β50.
Baddeley, Adrian, Pablo Gregori, Jorge Mateu, Radu Stoica, and Dietrich Stoyan. 2006.
Case Studies in Spatial Point Process Modeling. Vol. 185. Springer.
Baddeley, Adrian, and Jesper MΓΈller. 1989.
βNearest-Neighbour Markov Point Processes and Random Sets.β International Statistical Review / Revue Internationale de Statistique 57 (2): 89β121.
Baddeley, Adrian, Jesper MΓΈller, and Anthony G. Pakes. 2008.
βProperties of Residuals for Spatial Point Processes.β Annals of the Institute of Statistical Mathematics 60 (3): 627β49.
Baddeley, Adrian, and Rolf Turner. 2000.
βPractical Maximum Pseudolikelihood for Spatial Point Patterns.β Australian & New Zealand Journal of Statistics 42 (3): 283β322.
βββ. 2006.
βModelling Spatial Point Patterns in R.β In
Case Studies in Spatial Point Process Modeling, edited by Adrian Baddeley, Pablo Gregori, Jorge Mateu, Radu Stoica, and Dietrich Stoyan, 23β74. Lecture Notes in Statistics 185. Springer New York.
Baddeley, A., R. Turner, J. MΓΈller, and M. Hazelton. 2005.
βResidual Analysis for Spatial Point Processes (with Discussion).β Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67 (5): 617β66.
Barbieri, Riccardo, Michael C Quirk, Loren M Frank, Matthew A Wilson, and Emery N Brown. 2001.
βConstruction and Analysis of Non-Poisson Stimulus-Response Models of Neural Spiking Activity.β Journal of Neuroscience Methods 105 (1): 25β37.
Barbour, A. D. n.d.
βSteinβs Method and Poisson Process Convergence.β Journal of Applied Probability 25 (A): 175β84.
Barbour, A.D., and T.C. Brown. 1992.
βSteinβs Method and Point Process Approximation.β Stochastic Processes and Their Applications 43 (1): 9β31.
Barron, A. R., and T. M. Cover. 1991.
βMinimum Complexity Density Estimation.β IEEE Transactions on Information Theory 37 (4): 1034β54.
Basawa, Ishwar. 1980. Statistical Inference for Stochastic Processes. Academic Press.
Bashtannyk, David M., and Rob J. Hyndman. 2001.
βBandwidth Selection for Kernel Conditional Density Estimation.β Computational Statistics & Data Analysis 36 (3): 279β98.
Bauwens, Luc, and Nikolaus Hautsch. 2006.
βStochastic Conditional Intensity Processes.β Journal of Financial Econometrics 4 (3): 450β93.
Benichoux, Alexis, Emmanuel Vincent, and RΓ©mi Gribonval. 2013.
βA Fundamental Pitfall in Blind Deconvolution with Sparse and Shift-Invariant Priors.β In
ICASSP-38th International Conference on Acoustics, Speech, and Signal Processing-2013.
Berman, Mark, and Peter Diggle. 1989.
βEstimating Weighted Integrals of the Second-Order Intensity of a Spatial Point Process.β Journal of the Royal Statistical Society. Series B (Methodological) 51 (1): 81β92.
Berman, Mark, and T. Rolf Turner. 1992.
βApproximating Point Process Likelihoods with GLIM.β Journal of the Royal Statistical Society. Series C (Applied Statistics) 41 (1): 31β38.
BrΓ©maud, Pierre. 1972. βA Martingale Approach to Point Processes.β University of California, Berkeley.
BrΓ©maud, Pierre, Laurent MassouliΓ©, and Andrea Ridolfi. 2005.
βPower Spectra of Random Spike Fields and Related Processes.β Advances in Applied Probability 37 (4): 1116β46.
BrΓ©maud, P., and L. MassouliΓ©. 2002.
βPower Spectra of General Shot Noises and Hawkes Point Processes with a Random Excitation.β Advances in Applied Probability 34 (1): 205β22.
Brix, Anders, and Wilfrid S. Kendall. 2002.
βSimulation of Cluster Point Processes Without Edge Effects.β Advances in Applied Probability 34 (2): 267β80.
Brown, Lawrence D., T. Tony Cai, and Harrison H. Zhou. 2010.
βNonparametric Regression in Exponential Families.β The Annals of Statistics 38 (4): 2005β46.
Buckley, M. J., G. K. Eagleson, and B. W. Silverman. 1988.
βThe Estimation of Residual Variance in Nonparametric Regression.β Biometrika 75 (2): 189β99.
Chang, C., and F. P. Schoenberg. 2008. βTesting Separability in Multi-Dimensional Point Processes with Covariates.β Annals of the Institute of Statistical Mathematics.
Chang, Yi-Ping. 2001.
βEstimation of Parameters for Nonhomogeneous Poisson Process: Software Reliability with Change-Point Model.β Communications in Statistics - Simulation and Computation 30 (3): 623β35.
Chen, Feng, Richard M. Huggins, Paul S. F. Yip, and K. F. Lam. 2008.
βLocal Polynomial Estimation of Poisson Intensities in the Presence of Reporting Delays.β Journal of the Royal Statistical Society: Series C (Applied Statistics) 57 (4): 447β59.
Chen, Feng, and Tom Stindl. 2017.
βDirect Likelihood Evaluation for the Renewal Hawkes Process.β Journal of Computational and Graphical Statistics 27 (1): 1β13.
Chen, Feng, Paul S. F. Yip, and K. F. Lam. 2011.
βOn the Local Polynomial Estimators of the Counting Process Intensity Function and Its Derivatives.β Scandinavian Journal of Statistics 38 (4): 631β49.
Cheng, Tao, and Thomas Wicks. 2014.
βEvent Detection Using Twitter: A Spatio-Temporal Approach.β PLoS ONE 9 (6): e97807.
Chilinski, Pawel, and Ricardo Silva. 2020.
βNeural Likelihoods via Cumulative Distribution Functions.β arXiv:1811.00974 [Cs, Stat], June.
Claeskens, Gerda, Tatyana Krivobokova, and Jean D. Opsomer. 2009.
βAsymptotic Properties of Penalized Spline Estimators.β Biometrika 96 (3): 529β44.
Cox, D. R. 1965.
βOn the Estimation of the Intensity Function of a Stationary Point Process.β Journal of the Royal Statistical Society: Series B (Methodological) 27 (2): 332β37.
Cox, Dennis D., and Finbarr OβSullivan. 1990.
βAsymptotic Analysis of Penalized Likelihood and Related Estimators.β The Annals of Statistics 18 (4): 1676β95.
Crisan, Dan, and JoaquΓn MΓguez. 2014.
βParticle-Kernel Estimation of the Filter Density in State-Space Models.β Bernoulli 20 (4): 1879β929.
Cronie, O., and M. N. M. van Lieshout. 2016.
βBandwidth Selection for Kernel Estimators of the Spatial Intensity Function.β arXiv:1611.10221 [Stat], November.
Cucala, Lionel. 2008.
βIntensity Estimation for Spatial Point Processes Observed with Noise.β Scandinavian Journal of Statistics 35 (2): 322β34.
Cui, Yunwei, and Robert Lund. 2009.
βA New Look at Time Series of Counts.β Biometrika 96 (4): 781β92.
Cunningham, John P., Krishna V. Shenoy, and Maneesh Sahani. 2008.
βFast Gaussian Process Methods for Point Process Intensity Estimation.β In
Proceedings of the 25th International Conference on Machine Learning, 192β99. ICML β08. New York, NY, USA: ACM Press.
Dahlhaus, Rainer, and Michael Eichler. 2003.
βCausality and Graphical Models in Time Series Analysis.β Oxford Statistical Science Series, 115β37.
Dahlhaus, Rainer, and Wolfgang Polonik. 2009.
βEmpirical Spectral Processes for Locally Stationary Time Series.β Bernoulli 15 (1): 1β39.
Daley, Daryl J., and David Vere-Jones. 2003.
An introduction to the theory of point processes. 2nd ed. Vol. 1. Elementary theory and methods. New York: Springer.
βββ. 2008.
An Introduction to the Theory of Point Processes. 2nd ed. Vol. 2. General theory and structure. Probability and Its Applications. New York: Springer.
Das, Sanjiv R., Darrell Duffie, Nikunj Kapadia, and Leandro Saita. 2007.
βCommon Failings: How Corporate Defaults Are Correlated.β The Journal of Finance 62 (1): 93β117.
Diaconis, Persi, and David Freedman. 1984.
βAsymptotics of Graphical Projection Pursuit.β The Annals of Statistics 12 (3): 793β815.
DΓaz-Avalos, Carlos, P. Juan, and J. Mateu. 2012.
βSimilarity Measures of Conditional Intensity Functions to Test Separability in Multidimensional Point Processes.β Stochastic Environmental Research and Risk Assessment 27 (5): 1193β1205.
Diggle, Peter. 1985.
βA Kernel Method for Smoothing Point Process Data.β Journal of the Royal Statistical Society. Series C (Applied Statistics) 34 (2): 138β47.
Drovandi, Christopher C., Anthony N. Pettitt, and Roy A. McCutchan. 2016.
βExact and Approximate Bayesian Inference for Low Integer-Valued Time Series Models with Intractable Likelihoods.β Bayesian Analysis 11 (2): 325β52.
Eden, U, L Frank, R Barbieri, V Solo, and E Brown. 2004.
βDynamic Analysis of Neural Encoding by Point Process Adaptive Filtering.β Neural Computation 16 (5): 971β98.
Eichler, Michael, Rainer Dahlhaus, and Johannes Dueck. 2016.
βGraphical Modeling for Multivariate Hawkes Processes with Nonparametric Link Functions.β Journal of Time Series Analysis, January, n/aβ.
Ellis, Steven P. 1991.
βDensity Estimation for Point Processes.β Stochastic Processes and Their Applications 39 (2): 345β58.
Embrechts, Paul, Thomas Liniger, and Lu Lin. 2011.
βMultivariate Hawkes Processes: An Application to Financial Data.β Journal of Applied Probability 48A (August): 367β78.
Fan, Jianqing, and Runze Li. 2001.
βVariable Selection via Nonconcave Penalized Likelihood and Its Oracle Properties.β Journal of the American Statistical Association 96 (456): 1348β60.
Feigin, Paul David. 1976.
βMaximum Likelihood Estimation for Continuous-Time Stochastic Processes.β Advances in Applied Probability 8 (4): 712β36.
Filimonov, Vladimir, and Didier Sornette. 2013.
βApparent Criticality and Calibration Issues in the Hawkes Self-Excited Point Process Model: Application to High-Frequency Financial Data.β SSRN Scholarly Paper ID 2371284. Rochester, NY: Social Science Research Network.
Flaxman, Seth, Yee Whye Teh, and Dino Sejdinovic. 2016.
βPoisson Intensity Estimation with Reproducing Kernels.β arXiv:1610.08623 [Stat], October.
GaΓ―ffas, StΓ©phane, and Agathe Guilloux. 2012.
βHigh-Dimensional Additive Hazards Models and the Lasso.β Electronic Journal of Statistics 6: 522β46.
Geer, Sara van de, Peter BΓΌhlmann, Yaβacov Ritov, and Ruben Dezeure. 2014.
βOn Asymptotically Optimal Confidence Regions and Tests for High-Dimensional Models.β The Annals of Statistics 42 (3): 1166β1202.
Geyer, Charles J., and Jesper MΓΈller. 1994.
βSimulation Procedures and Likelihood Inference for Spatial Point Processes.β Scandinavian Journal of Statistics, 359β73.
Giesecke, Kay, and Gustavo Schwenkler. 2011.
βFiltered Likelihood for Point Processes.β SSRN Scholarly Paper ID 1898344. Rochester, NY: Social Science Research Network.
Giesecke, K., H. Kakavand, and M. Mousavi. 2008.
βSimulating Point Processes by Intensity Projection.β In
Simulation Conference, 2008. WSC 2008. Winter, 560β68.
βββ. 2011.
βExact Simulation of Point Processes with Stochastic Intensities.β Operations Research 59 (5): 1233β45.
Goulard, Michel, Aila SΓ€rkkΓ€, and Pavel Grabarnik. 1996.
βParameter Estimation for Marked Gibbs Point Processes Through the Maximum Pseudo-Likelihood Method.β Scandinavian Journal of Statistics, 365β79.
Green, Peter J. 1987.
βPenalized Likelihood for General Semi-Parametric Regression Models.β International Statistical Review / Revue Internationale de Statistique 55 (3): 245β59.
Guan, Yongtao. 2008a.
βVariance Estimation for Statistics Computed from Inhomogeneous Spatial Point Processes.β Journal of the Royal Statistical Society: Series B (Statistical Methodology) 70 (1): 175β90.
Guan, Yongtao, and Michael Sherman. 2007.
βOn Least Squares Fitting for Stationary Spatial Point Processes.β Journal of the Royal Statistical Society: Series B (Statistical Methodology) 69 (1): 31β49.
Hansen, Niels Richard, Patricia Reynaud-Bouret, and Vincent Rivoirard. 2015.
βLasso and Probabilistic Inequalities for Multivariate Point Processes.β Bernoulli 21 (1): 83β143.
Hardiman, Stephen J., and Jean-Philippe Bouchaud. 2014.
βBranching-Ratio Approximation for the Self-Exciting Hawkes Process.β Physical Review E 90 (6): 062807.
Hawe, S., M. Kleinsteuber, and K. Diepold. 2013.
βAnalysis Operator Learning and Its Application to Image Reconstruction.β IEEE Transactions on Image Processing 22 (6): 2138β50.
Hawkes, Alan G. 1971a.
βPoint Spectra of Some Mutually Exciting Point Processes.β Journal of the Royal Statistical Society. Series B (Methodological) 33 (3): 438β43.
Hosmer, David W. 2011. Applied Survival Analysis: Regression Modeling of Time-To-Event Data. Wiley-Interscience.
Huang, Fuchun, and Yosihiko Ogata. 1999.
βImprovements of the Maximum Pseudo-Likelihood Estimators in Various Spatial Statistical Models.β Journal of Computational and Graphical Statistics 8 (3): 510β30.
Hurvich, Clifford M., Jeffrey S. Simonoff, and Chih-Ling Tsai. 1998.
βSmoothing Parameter Selection in Nonparametric Regression Using an Improved Akaike Information Criterion.β Journal of the Royal Statistical Society. Series B (Statistical Methodology) 60 (2): 271β93.
Iribarren, JosΓ© Luis, and Esteban Moro. 2011.
βBranching Dynamics of Viral Information Spreading.β Physical Review E 84 (4): 046116.
Jensen, Jens Ledet, and Hans R. KΓΌnsch. 1994.
βOn Asymptotic Normality of Pseudo Likelihood Estimates for Pairwise Interaction Processes.β Annals of the Institute of Statistical Mathematics 46 (3): 475β86.
Jensen, Jens Ledet, and Jesper MΓΈller. 1991.
βPseudolikelihood for Exponential Family Models of Spatial Point Processes.β The Annals of Applied Probability 1 (3): 445β61.
JovanoviΔ, Stojan, John Hertz, and Stefan Rotter. 2015.
βCumulants of Hawkes Point Processes.β Physical Review E 91 (4): 042802.
Karr, Alan F. 1986. Point Processes and Their Statistical Inference. New York: Marcel Dekker Inc.
Kass, Robert E., Shun-Ichi Amari, Kensuke Arai, Emery N. Brown, Casey O. Diekman, Markus Diesmann, Brent Doiron, et al. 2018.
βComputational Neuroscience: Mathematical and Statistical Perspectives.β Annual Review of Statistics and Its Application 5 (1): 183β214.
Koenker, Roger, and Kevin F. Hallock. 2001.
βQuantile Regression.β The Journal of Economic Perspectives 15 (4): 143β56.
Koenker, Roger, and JosΓ© A. F. Machado. 1999.
βGoodness of Fit and Related Inference Processes for Quantile Regression.β Journal of the American Statistical Association 94 (448): 1296β1310.
Koenker, Roger, and Ivan Mizera. 2006.
βDensity Estimation by Total Variation Regularization.β Advances in Statistical Modeling and Inference, 613β34.
Konishi, Sadanori, and Genshiro Kitagawa. 1996.
βGeneralised Information Criteria in Model Selection.β Biometrika 83 (4): 875β90.
Kroese, Dirk P., and Zdravko I. Botev. 2013.
βSpatial Process Generation.β arXiv:1308.0399 [Stat], August.
KvitkoviΔovΓ‘, Andrea, and Victor M. Panaretos. 2011.
βAsymptotic Inference for Partially Observed Branching Processes.β Advances in Applied Probability 43 (4): 1166β90.
KwieciΕski, Andrzej, and Ryszard Szekli. 1996.
βSome Monotonicity and Dependence Properties of Self-Exciting Point Processes.β The Annals of Applied Probability 6 (4): 1211β31.
Lewis, Erik, George Mohler, P. Jeffrey Brantingham, and Andrea L. Bertozzi. 2012.
βSelf-Exciting Point Process Models of Civilian Deaths in Iraq.β Security Journal 25 (3): 244β64.
Lieshout, Marie-Colette N. M. van. 2011.
βOn Estimation of the Intensity Function of a Point Process.β Methodology and Computing in Applied Probability 14 (3): 567β78.
Lieshout, Marie-Colette NM van. 2000. Markov Point Processes and Their Applications. London: Imperial College Press.
Lindsey, J. K. 1995.
βFitting Parametric Counting Processes by Using Log-Linear Models.β Journal of the Royal Statistical Society. Series C (Applied Statistics) 44 (2): 201β12.
Mairal, Julien, Francis Bach, Jean Ponce, and Guillermo Sapiro. 2009.
βOnline Dictionary Learning for Sparse Coding.β In
Proceedings of the 26th Annual International Conference on Machine Learning, 689β96. ICML β09. New York, NY, USA: ACM.
Marcus, Gary, Adam Marblestone, and Thomas Dean. 2014.
βThe atoms of neural computation.β Science 346 (6209): 551β52.
Martin, James S., Ajay Jasra, and Emma McCoy. 2013.
βInference for a Class of Partially Observed Point Process Models.β Annals of the Institute of Statistical Mathematics 65 (3): 413β37.
Marzen, S. E., and J. P. Crutchfield. 2020.
βInference, Prediction, and Entropy-Rate Estimation of Continuous-Time, Discrete-Event Processes.β arXiv:2005.03750 [Cond-Mat, Physics:nlin, Stat], May.
Matsumoto, Hiroyuki, and Marc Yor. 2005.
βExponential Functionals of Brownian Motion, I: Probability Laws at Fixed Time.β Probability Surveys 2: 312β47.
McCullagh, Peter, and Jesper MΓΈller. 2006.
βThe Permanental Process.β Advances in Applied Probability 38 (4): 873β88.
Mishra, Swapnil, Marian-Andrei Rizoiu, and Lexing Xie. 2016.
βFeature Driven and Point Process Approaches for Popularity Prediction.β In
Proceedings of the 25th ACM International Conference on Information and Knowledge Management, 1069β78. CIKM β16. New York, NY, USA: ACM.
Mohler, G. O., M. B. Short, P. J. Brantingham, F. P. Schoenberg, and G. E. Tita. 2011.
βSelf-Exciting Point Process Modeling of Crime.β Journal of the American Statistical Association 106 (493): 100β108.
MΓΈller, Jesper, and Jakob G. Rasmussen. 2006.
βApproximate Simulation of Hawkes Processes.β Methodology and Computing in Applied Probability 8 (1): 53β64.
MΓΈller, Jesper, and Rasmus Waagepetersen. 2017.
βSome Recent Developments in Statistics for Spatial Point Patterns.β Annual Review of Statistics and Its Application 4 (1): 317β42.
MΓΈller, Jesper, and Rasmus Plenge Waagepetersen. 2003.
Statistical Inference and Simulation for Spatial Point Processes. Chapman and Hall/CRC.
βββ. 2007.
βModern Statistics for Spatial Point Processes.β Scandinavian Journal of Statistics 34 (4): 643β84.
Morimoto, Tetsuzo. 1963.
βMarkov Processes and the H-Theorem.β Journal of the Physical Society of Japan 18 (3): 328β31.
Neustifter, Benjamin, Stephen L. Rathbun, and Saul Shiffman. 2012.
βMixed-Poisson Point Process with Partially-Observed Covariates: Ecological Momentary Assessment of Smoking.β Journal of Applied Statistics 39 (4): 883β99.
Oakes, David. 1975.
βThe Markovian Self-Exciting Process.β Journal of Applied Probability 12 (1): 69.
Ogata, Y. 1981.
βOn Lewisβ Simulation Method for Point Processes.β IEEE Transactions on Information Theory 27 (1): 23β31.
βββ. 1999.
βSeismicity Analysis Through Point-Process Modeling: A Review.β Pure and Applied Geophysics 155 (2-4): 471β507.
Ogata, Yoshiko. 1978.
βThe Asymptotic Behaviour of Maximum Likelihood Estimators for Stationary Point Processes.β Annals of the Institute of Statistical Mathematics 30 (1): 243β61.
Ogata, Yosihiko. 1988.
βStatistical Models for Earthquake Occurrences and Residual Analysis for Point Processes.β Journal of the American Statistical Association 83 (401): 9β27.
Ogata, Yosihiko, and Hirotugu Akaike. 1982.
βOn Linear Intensity Models for Mixed Doubly Stochastic Poisson and Self-Exciting Point Processes.β Journal of the Royal Statistical Society, Series B 44: 269β74.
Ogata, Yosihiko, Ritsuko S. Matsuβura, and Koichi Katsura. 1993.
βFast Likelihood Computation of Epidemic Type Aftershock-Sequence Model.β Geophysical Research Letters 20 (19): 2143β46.
Olshausen, B. A., and D. J. Field. 1996.
βNatural image statistics and efficient coding.β Network (Bristol, England) 7 (2): 333β39.
Omi, Takahiro, Naonori Ueda, and Kazuyuki Aihara. 2020.
βFully Neural Network Based Model for General Temporal Point Processes.β arXiv:1905.09690 [Cs, Stat], January.
Ozaki, T. 1979.
βMaximum Likelihood Estimation of Hawkesβ Self-Exciting Point Processes.β Annals of the Institute of Statistical Mathematics 31 (1): 145β55.
Panaretos, Victor M., and Yoav Zemel. 2016.
βSeparation of Amplitude and Phase Variation in Point Processes.β The Annals of Statistics 44 (2): 771β812.
Paninski, Liam. 2004.
βMaximum Likelihood Estimation of Cascade Point-Process Neural Encoding Models.β Network: Computation in Neural Systems 15 (4): 243β62.
Pnevmatikakis, Eftychios A. 2017.
βCompressed Sensing and Optimal Denoising of Monotone Signals.β In
2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 4740β44.
Pouget-Abadie, Jean, and Thibaut Horel. 2015.
βInferring Graphs from Cascades: A Sparse Recovery Framework.β In
Proceedings of The 32nd International Conference on Machine Learning.
Puri, Madan L., and Pham D. Tuan. 1986.
βMaximum Likelihood Estimation for Stationary Point Processes.β Proceedings of the National Academy of Sciences of the United States of America 83 (3): 541β45.
Rasmussen, Jakob Gulddahl. 2013.
βBayesian Inference for Hawkes Processes.β Methodology and Computing in Applied Probability 15 (3): 623β42.
Rasmussen, Jakob Gulddahl, Jesper MΓΈller, B. H. Aukema, K. F. Raffa, and J. Zhu. 2006.
βBayesian Inference for Multivariate Point Processes Observed at Sparsely Distributed Times.β Department of Mathematical Sciences, Aalborg University.
Ravanbakhsh, Siamak, Jeff Schneider, and Barnabas Poczos. 2016.
βDeep Learning with Sets and Point Clouds.β In
arXiv:1611.04500 [Cs, Stat].
Reynaud-Bouret, Patricia, Vincent Rivoirard, Franck Grammont, and Christine Tuleau-Malot. 2014.
βGoodness-of-Fit Tests and Nonparametric Adaptive Estimation for Spike Train Analysis.β The Journal of Mathematical Neuroscience 4 (1): 3.
Reynaud-Bouret, Patricia, and Emmanuel Roy. 2007. βSome Non Asymptotic Tail Estimates for Hawkes Processes.β Bulletin of the Belgian Mathematical Society - Simon Stevin 13 (5): 883β96.
Reynaud-Bouret, Patricia, and Sophie Schbath. 2010.
βAdaptive Estimation for Hawkes Processes; Application to Genome Analysis.β The Annals of Statistics 38 (5): 2781β2822.
Ridolfi, Andrea. 2005.
βPower Spectra of Random Spikes and Related Complex Signals.β Institut de systΓ¨mes de communication SECTION DES SYSTΓMES DE COMMUNICATION POUR LβOBTENTION DU GRADE DE DOCTEUR ΓS SCIENCES PAR laurea di dottore in ingegneria elettronica, Politecnico di Milano.
Ripley, B. D., and F. P. Kelly. 1977.
βMarkov Point Processes.β Journal of the London Mathematical Society s2-15 (1): 188β92.
Rizoiu, Marian-Andrei, Lexing Xie, Scott Sanner, Manuel Cebrian, Honglin Yu, and Pascal Van Hentenryck. 2017.
βExpecting to Be HIP: Hawkes Intensity Processes for Social Media Popularity.β In
World Wide Web 2017, International Conference on, 1β9. WWW β17. Perth, Australia: International World Wide Web Conferences Steering Committee.
Rubin, Izhak. 1972.
βRegular Point Processes and Their Detection.β IEEE Transactions on Information Theory 18 (5): 547β57.
Saichev, A., and D. Sornette. 2011.
βGenerating Functions and Stability Study of Multivariate Self-Excited Epidemic Processes.β arXiv:1101.5564 [Cond-Mat, Physics:physics], January.
Schelldorfer, JΓΌrg, Lukas Meier, and Peter BΓΌhlmann. 2014.
βGLMMLasso: An Algorithm for High-Dimensional Generalized Linear Mixed Models Using β1-Penalization.β Journal of Computational and Graphical Statistics 23 (2): 460β77.
Schoenberg, Frederic Paik. 2002.
βOn Rescaled Poisson Processes and the Brownian Bridge.β Annals of the Institute of Statistical Mathematics 54 (2): 445β57.
βββ. 2005.
βConsistent Parametric Estimation of the Intensity of a SpatialβTemporal Point Process.β Journal of Statistical Planning and Inference 128 (1): 79β93.
Sevastβyanov, B. A. 1968.
βRenewal Equations and Moments of Branching Processes.β Mathematical Notes of the Academy of Sciences of the USSR 3 (1): 3β10.
βββ. 1984.
βSpline Smoothing: The Equivalent Variable Kernel Method.β The Annals of Statistics 12 (3): 898β916.
Simon, Noah, Jerome Friedman, Trevor Hastie, and Rob Tibshirani. 2011.
βRegularization Paths for Coxβs Proportional Hazards Model via Coordinate Descent.β Journal of Statistical Software 39 (5).
Simpson, Daniel, Janine Illian, Finn Lindgren, Sigrunn SΓΈrbye, and HΓ₯vard Rue. 2011.
βGoing Off Grid: Computationally Efficient Inference for Log-Gaussian Cox Processes.β arXiv:1111.0641 [Math, Stat], November.
Smith, A, and E Brown. 2003.
βEstimating a State-Space Model from Point Process Observations.β Neural Computation 15 (5): 965β91.
StΓ€dler, Nicolas, and Sach Mukherjee. 2013.
βPenalized Estimation in High-Dimensional Hidden Markov Models with State-Specific Graphical Models.β The Annals of Applied Statistics 7 (4): 2157β79.
Stefanski, Leonard A., and Raymond J. Carroll. 1990.
βDeconvolving Kernel Density Estimators.β Statistics 21 (2): 169β84.
Thrampoulidis, Chrtistos, Ehsan Abbasi, and Babak Hassibi. 2015.
βLASSO with Non-Linear Measurements Is Equivalent to One With Linear Measurements.β In
Advances in Neural Information Processing Systems 28, edited by C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, R. Garnett, and R. Garnett, 3402β10. Curran Associates, Inc.
Tria, F., V. Loreto, V. D. P. Servedio, and S. H. Strogatz. 2013.
βThe Dynamics of Correlated Novelties.β arXiv:1310.1953 [Physics] 4 (October).
Vacarescu. 2011. Filtering and Parameter Estimation for Partially Observed Point Processes.
Veen, Alejandro, and Frederic P Schoenberg. 2008.
βEstimation of SpaceβTime Branching Process Models in Seismology Using an EMβType Algorithm.β Journal of the American Statistical Association 103 (482): 614β24.
Vere-Jones, David, and Frederic Paik Schoenberg. 2004.
βRescaling Marked Point Processes.β Australian & New Zealand Journal of Statistics 46 (1): 133β43.
Wheatley, Spencer. 2013. βQuantifying Endogeneity in Market Prices with Point Processes: Methods & Applications.β Masters Thesis. ETH ZΓΌrich.
Willett, R. M., and R. D. Nowak. 2007.
βMultiscale Poisson Intensity and Density Estimation.β IEEE Transactions on Information Theory 53 (9): 3171β87.
WΓΆrmann, Julian, Simon Hawe, and Martin Kleinsteuber. 2013.
βAnalysis Based Blind Compressive Sensing.β IEEE Signal Processing Letters 20 (5): 491β94.
Wu, Shuang, Hans-Georg MΓΌller, and Zhen Zhang. 2013.
βFunctional Data Analysis for Point Processes with Rare Events.β Statistica Sinica 23 (1): 1β23.
Zarezade, Ali, Utkarsh Upadhyay, Hamid R. Rabiee, and Manuel Gomez-Rodriguez. 2017.
βRedQueen: An Online Algorithm for Smart Broadcasting in Social Networks.β In
Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, 51β60. WSDM β17. New York, NY, USA: ACM Press.
Zhang, Cun-Hui, and Stephanie S. Zhang. 2014.
βConfidence Intervals for Low Dimensional Parameters in High Dimensional Linear Models.β Journal of the Royal Statistical Society: Series B (Statistical Methodology) 76 (1): 217β42.
Zhang, Rui, Christian Walder, and Marian-Andrei Rizoiu. 2020.
βVariational Inference for Sparse Gaussian Process Modulated Hawkes Process.β In
Proceedings of the AAAI Conference on Artificial Intelligence, 34:6803β10.
Zhou, Ke, Hongyuan Zha, and Le Song. 2013.
βLearning Triggering Kernels for Multi-Dimensional Hawkes Processes.β In
Proceedings of the 30th International Conference on Machine Learning (ICML-13), 1301β9.
No comments yet. Why not leave one?