Zeros of random trigonometric polynomials

May 20, 2019 — October 14, 2019

control
functional analysis
probability
signal processing

For a certain nonconvex optimisation problem, I would like to know the expected number of real zeros of trigonometric polynomials

\[0=\sum_{k=1}^{k=N}A(k)\sin(kx)B(k)\cos(kx)\]

for given distributions over \(A(k)\) and \(B(k)\).

This is not exactly the usual sense of polynomial, although if one thinks about polynomials over the complex numbers and squints at it, the relationship is not hard to see.

This problem is well studied for i.i.d. standard normal coefficients \(A(k),B(k)\).

It turns out there are some determinantal point processes models for the distributions of zeros, which I should look into. (Ben Hough et al. 2009; Pemantle and Rivin 2013; Krishnapur 2006)

I need more general results than i.i.d. coefficients; in particular, I need to relax the identical distribution assumption. 🚧TODO🚧 clarify

1 References

Angst, Dalmao, and Poly. 2017. On the Real Zeros of Random Trigonometric Polynomials with Dependent Coefficients.” arXiv:1706.01654 [Math].
Azäis, and Pham. 2013. The Record Method for Two and Three Dimensional Parameters Random Fields.” arXiv:1302.1017 [Math].
Azäis, and Wschebor. 2009. Level Sets and Extrema of Random Processes and Fields: Azaïs/Level Sets and Extrema of Random Processes and Fields.
Ben Hough, Krishnapur, Peres, et al. 2009. Zeros of Gaussian Analytic Functions and Determinantal Point Processes. University Lecture Series, v. 51.
Boyd. 2007. Computing the Zeros of a Fourier Series or a Chebyshev Series or General Orthogonal Polynomial Series with Parity Symmetries.” Computers & Mathematics with Applications.
Das. 1968. The Average Number of Real Zeros of a Random Trigonometric Polynomial.” Mathematical Proceedings of the Cambridge Philosophical Society.
Dumitrescu. 2017. Positive trigonometric polynomials and signal processing applications. Signals and communication technology.
Dunnage. 1966. The Number of Real Zeros of a Random Trigonometric Polynomial.” Proceedings of the London Mathematical Society.
Edelman, and Kostlan. 1995. How Many Zeros of a Random Polynomial Are Real? Bulletin of the American Mathematical Society.
Farahmand, Kambiz. 1990. On the Average Number of Level Crossings of a Random Trigonometric Polynomial.” The Annals of Probability.
Farahmand, K. 1992. Number of Real Roots of a Random Trigonometric Polynomial.” Journal of Applied Mathematics and Stochastic Analysis.
Farahmand, K., and Li. 2010. Random Trigonometric Polynomials with Nonidentically Distributed Coefficients.” International Journal of Stochastic Analysis.
Farahmand, K., and Sambandham. 1997. On the Expected Number of Real Zeros of Random Trigonometric Polynomials.” Analysis.
Flasche. 2017. Expected Number of Real Roots of Random Trigonometric Polynomials.” Stochastic Processes and Their Applications.
García. 2002. A Brief Walk Through Sampling Theory.” In Advances in Imaging and Electron Physics.
Krishnapur. 2006. Zeros of Random Analytic Functions.” arXiv:math/0607504.
Krishnapur, and Virág. 2014. The Ginibre Ensemble and Gaussian Analytic Functions.” International Mathematics Research Notices.
Megretski. 2003. Positivity of Trigonometric Polynomials.” In 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).
Pemantle, and Rivin. 2013. “The Distribution of Zeros of the Derivative of a Random Polynomial.” In Advances in Combinatorics.
Schweikard. 1991. Trigonometric Polynomials with Simple Roots.” Information Processing Letters.
Su, and Shao. 2012. Asymptotics of the Variance of the Number of Real Roots of Random Trigonometric Polynomials.” Science China Mathematics.
Vanderbei. 2015. The Complex Roots of Random Sums.” arXiv:1508.05162 [Math].
Wilkins. 1991. Mean Number of Real Zeros of a Random Trigonometric Polynomial.” Proceedings of the American Mathematical Society.