Alexanderian, Alen. 2015.
“A Brief Note on the Karhunen-Loève Expansion.” October 26, 2015.
http://arxiv.org/abs/1509.07526.
Calatayud Gregori, Julia, Benito M. Chen-Charpentier, Juan Carlos Cortés López, and Marc Jornet Sanz. 2019.
“Combining Polynomial Chaos Expansions and the Random Variable Transformation Technique to Approximate the Density Function of Stochastic Problems, Including Some Epidemiological Models.” Symmetry 11 (1): 43.
https://doi.org/10.3390/sym11010043.
Franceschini, Chiara, and Cristian Giardinà. 2017.
“Stochastic Duality and Orthogonal Polynomials.” January 31, 2017.
http://arxiv.org/abs/1701.09115.
Ghanem, Roger G., and Pol D. Spanos. 2003.
Stochastic Finite Elements: A Spectral Approach.
New York, NY:
Courier Corporation.
https://doi.org/10.1007/978-1-4612-3094-6_1.
Ghanem, Roger, and John Red-Horse. 2017.
“Polynomial Chaos: Modeling, Estimation, and Approximation.” In
Handbook of Uncertainty Quantification, edited by Roger Ghanem, David Higdon, and Houman Owhadi, 521–51.
Cham:
Springer International Publishing.
https://doi.org/10.1007/978-3-319-12385-1_13.
Gratiet, Loïc Le, Stefano Marelli, and Bruno Sudret. 2016.
“Metamodel-Based Sensitivity Analysis: Polynomial Chaos Expansions and Gaussian Processes.” In
Handbook of Uncertainty Quantification, edited by Roger Ghanem, David Higdon, and Houman Owhadi, 1–37.
Cham:
Springer International Publishing.
https://doi.org/10.1007/978-3-319-11259-6_38-1.
Kim, Kwang-Ki K., and Richard D. Braatz. 2013.
“Generalised Polynomial Chaos Expansion Approaches to Approximate Stochastic Model Predictive Control †.” International Journal of Control 86 (8): 1324–37.
https://doi.org/10.1080/00207179.2013.801082.
Kim, Kwang-Ki K., Dongying Erin Shen, Zoltan K. Nagy, and Richard D. Braatz. 2013.
“Wiener’s Polynomial Chaos for the Analysis and Control of Nonlinear Dynamical Systems with Probabilistic Uncertainties [Historical Perspectives].” IEEE Control Systems Magazine 33 (5): 58–67.
https://doi.org/10.1109/MCS.2013.2270410.
Lei, Huan, Jing Li, Peiyuan Gao, Panos Stinis, and Nathan Baker. 2018.
“A Data-Driven Framework for Sparsity-Enhanced Surrogates with Arbitrary Mutually Dependent Randomness,” April.
https://doi.org/10.1016/j.cma.2019.03.014.
Levajkovic, Tijana, and Dora Selesi. 2011.
“Chaos Expansion Methods for Stochastic Differential Equations Involving the Malliavin Derivative, Part I.” Publications de l’Institut Mathematique 90 (104): 65–84.
https://doi.org/10.2298/PIM1104065L.
Luo, Wuan. 2006.
“Wiener Chaos Expansion and Numerical Solutions of Stochastic Partial Differential Equations.” PhD thesis,
California Institute of Technology.
https://doi.org/10.7907/RPKX-BN02.
Nualart, David, and Wim Schoutens. 2000.
“Chaotic and Predictable Representations for Lévy Processes.” Stochastic Processes and Their Applications 90 (1): 109–22.
https://doi.org/10.1016/S0304-4149(00)00035-1.
Oladyshkin, S., and W. Nowak. 2012.
“Data-Driven Uncertainty Quantification Using the Arbitrary Polynomial Chaos Expansion.” Reliability Engineering & System Safety 106 (October): 179–90.
https://doi.org/10.1016/j.ress.2012.05.002.
Schoutens, Wim. 2000.
Stochastic Processes and Orthogonal Polynomials. Lecture
Notes in
Statistics.
New York:
Springer-Verlag.
https://doi.org/10.1007/978-1-4612-1170-9.
Wan, Xiaoliang, and George Em Karniadakis. 2006.
“Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures.” SIAM Journal on Scientific Computing 28 (3): 901–28.
https://doi.org/10.1137/050627630.
Wiener, Norbert. 1938.
“The Homogeneous Chaos.” American Journal of Mathematics 60 (4): 897.
https://doi.org/10.2307/2371268.
Witteveen, Jeroen A. S., and Hester Bijl. 2006.
“Modeling Arbitrary Uncertainties Using Gram-Schmidt Polynomial Chaos.” In
44th AIAA Aerospace Sciences Meeting and Exhibit.
American Institute of Aeronautics and Astronautics.
https://doi.org/10.2514/6.2006-896.
Xiu, Dongbin. 2010.
Numerical Methods for Stochastic Computations: A Spectral Method Approach.
USA:
Princeton University Press.
https://doi.org/10.2307/j.ctv7h0skv.
Zhang, Dongkun, Lu Lu, Ling Guo, and George Em Karniadakis. 2019.
“Quantifying Total Uncertainty in Physics-Informed Neural Networks for Solving Forward and Inverse Stochastic Problems.” Journal of Computational Physics 397 (November): 108850.
https://doi.org/10.1016/j.jcp.2019.07.048.
Zheng, Mengdi, Xiaoliang Wan, and George Em Karniadakis. 2015.
“Adaptive Multi-Element Polynomial Chaos with Discrete Measure: Algorithms and Application to SPDEs.” Applied Numerical Mathematics 90 (April): 91–110.
https://doi.org/10.1016/j.apnum.2014.11.006.