Bio computing



Using living organisms as logic gates or even as general computing devices. Viewed as a computational science this might be considered an especially quaint sub-field of Turing-Machine-hunting. OTOH, the ability to bake real computation into the structures of life suggests many obvious applications and surely non-obvious ones.

As distinct from doing computation using computers with algorithms modeled off living organisms - that is the field of biomimetic algorithms.

Projects like Microsoftโ€™s Station B and Biological computation unit are angling for some market share in this field. There are many others.

References

Abramson, Charles I., and Michael Levin. 2021. โ€œBehaviorist Approaches to Investigating Memory and Learning: A Primer for Synthetic Biology and Bioengineering.โ€ Communicative & Integrative Biology 14 (1): 230โ€“47.
Adamatzky, Andrew, and Theresa Schubert. 2014. โ€œSlime Mold Microfluidic Logical Gates.โ€ Materials Today 17 (2): 86โ€“91.
Baer, R M, and H M Martinez. 1974. โ€œAutomata and Biology.โ€ Annual Review of Biophysics and Bioengineering 3 (1): 255โ€“91.
Beniaguev, David, Idan Segev, and Michael London. 2021. โ€œSingle Cortical Neurons as Deep Artificial Neural Networks.โ€ Neuron 109 (17): 2727โ€“2739.e3.
Bongard, Joshua, and Michael Levin. 2021. โ€œLiving Things Are Not (20th Century) Machines: Updating Mechanism Metaphors in Light of the Modern Science of Machine Behavior.โ€ Frontiers in Ecology and Evolution 9.
Bray. 1995. โ€œProtein Molecules as Computational Elements in Living Cells.โ€ Nature 376: 307โ€“12.
Brette, Romain. 2012. โ€œComputing with Neural Synchrony.โ€ PLoS Comput Biol 8 (6): e1002561.
Chen, Zibo, James M. Linton, Ronghui Zhu, and Michael B. Elowitz. 2022. โ€œA Synthetic Protein-Level Neural Network in Mammalian Cells.โ€ bioRxiv.
Fields, Chris, and Michael Levin. 2020. โ€œHow Do Living Systems Create Meaning?โ€ Philosophies 5 (4): 36.
โ€”โ€”โ€”. 2021. โ€œMetabolic limits on classical information processing by biological cells.โ€ Bio Systems 209 (November): 104513.
Gopalkrishnan, Manoj. 2015. โ€œA Scheme for Molecular Computation of Maximum Likelihood Estimators for Log-Linear Models.โ€ arXiv:1506.03172 [Cs, Math, q-Bio, Stat], June.
Klein, Brennan, Erik Hoel, Anshuman Swain, Ross Griebenow, and Michael Levin. 2021. โ€œEvolution and Emergence: Higher Order Information Structure in Protein Interactomes Across the Tree of Life.โ€ Integrative Biology 13 (12): 283โ€“94.
Levin, Michael. 2019. โ€œThe Computational Boundary of a โ€˜Selfโ€™: Developmental Bioelectricity Drives Multicellularity and Scale-Free Cognition.โ€ Frontiers in Psychology 10.
Levin, Michael, Fred Keijzer, Pamela Lyon, and Detlev Arendt. 2021. โ€œUncovering Cognitive Similarities and Differences, Conservation and Innovation.โ€ Philosophical Transactions of the Royal Society B: Biological Sciences 376 (1821): 20200458.
Levin, Rafael Yuste, Michael. n.d. โ€œNew Clues about the Origins of Biological Intelligence.โ€ Scientific American.
Liang, Yuchen, Chaitanya K. Ryali, Benjamin Hoover, Leopold Grinberg, Saket Navlakha, Mohammed J. Zaki, and Dmitry Krotov. 2021. โ€œCan a Fruit Fly Learn Word Embeddings?โ€ arXiv:2101.06887 [Cs, q-Bio, Stat], January.
Lyon, Pamela, Fred Keijzer, Detlev Arendt, and Michael Levin. 2021. โ€œReframing Cognition: Getting down to Biological Basics.โ€ Philosophical Transactions of the Royal Society B: Biological Sciences 376 (1820): 20190750.
Manicka, Santosh, and Michael Levin. 2022. โ€œMinimal Developmental Computation: A Causal Network Approach to Understand Morphogenetic Pattern Formation.โ€ Entropy 24 (1): 107.
McGee, Ryan Seamus, Olivia Kosterlitz, Artem Kaznatcheev, Benjamin Kerr, and Carl T. Bergstrom. 2022. โ€œThe Cost of Information Acquisition by Natural Selection.โ€ bioRxiv.
Orellana, Josue, Jordan Rodu, and Robert E. Kass. 2017. โ€œPopulation Vectors Can Provide Near Optimal Integration of Information.โ€ Neural Computation 29 (8): 2021โ€“29.
Randazzo, Ettore, Alexander Mordvintsev, Eyvind Niklasson, Michael Levin, and Sam Greydanus. 2020. โ€œSelf-Classifying MNIST Digits.โ€ Distill 5 (8): e00027.002.
Scarle, Simon. 2009. โ€œImplications of the Turing completeness of reaction-diffusion models, informed by GPGPU simulations on an XBox 360: cardiac arrhythmias, re-entry and the Halting problem.โ€ Computational Biology and Chemistry 33 (4): 253โ€“60.
Semenov, Sergey N., Lewis J. Kraft, Alar Ainla, Mengxia Zhao, Mostafa Baghbanzadeh, Victoria E. Campbell, Kyungtae Kang, Jerome M. Fox, and George M. Whitesides. 2016. โ€œAutocatalytic, Bistable, Oscillatory Networks of Biologically Relevant Organic Reactions.โ€ Nature 537 (7622): 656โ€“60.
Straszak, Damian, and Nisheeth K. Vishnoi. 2016. โ€œIRLS and Slime Mold: Equivalence and Convergence.โ€ arXiv:1601.02712 [Cs, Math, Stat], January.
Vanchurin, Vitaly, Yuri I. Wolf, Mikhail Katsnelson, and Eugene V. Koonin. 2021. โ€œTowards a Theory of Evolution as Multilevel Learning.โ€ Cold Spring Harbor Laboratory.
Watson, Richard A., Michael Levin, and Christopher L. Buckley. 2022. โ€œDesign for an Individual: Connectionist Approaches to the Evolutionary Transitions in Individuality.โ€ Frontiers in Ecology and Evolution 10.
Watson, Richard A., Rob Mills, C. L. Buckley, Kostas Kouvaris, Adam Jackson, Simon T. Powers, Chris Cox, et al. 2016. โ€œEvolutionary Connectionism: Algorithmic Principles Underlying the Evolution of Biological Organisation in Evo-Devo, Evo-Eco and Evolutionary Transitions.โ€ Evolutionary Biology 43 (4): 553โ€“81.
Wilkinson, Darren J. 2009. โ€œStochastic Modelling for Quantitative Description of Heterogeneous Biological Systems.โ€ Nature Reviews Genetics 10 (2): 122โ€“33.

No comments yet. Why not leave one?

GitHub-flavored Markdown & a sane subset of HTML is supported.