Amigó, José M, Janusz Szczepański, Elek Wajnryb, and Maria V Sanchez-Vives. 2004.
“Estimating the Entropy Rate of Spike Trains via Lempel-Ziv Complexity.” Neural Computation 16: 717–36.
https://doi.org/10.1162/089976604322860677.
Barbieri, Riccardo, Michael C Quirk, Loren M Frank, Matthew A Wilson, and Emery N Brown. 2001.
“Construction and Analysis of Non-Poisson Stimulus-Response Models of Neural Spiking Activity.” Journal of Neuroscience Methods 105 (1): 25–37.
https://doi.org/10.1016/S0165-0270(00)00344-7.
Berwick, Robert C., Kazuo Okanoya, Gabriel J. L. Beckers, and Johan J. Bolhuis. 2011.
“Songs to Syntax: The Linguistics of Birdsong.” Trends in Cognitive Sciences 15 (3): 113–21.
https://doi.org/10.1016/j.tics.2011.01.002.
Brette, Romain. 2008.
“Generation of Correlated Spike Trains.” Neural Computation 0 (0): 080804143617793–28.
https://doi.org/10.1162/neco.2008.12-07-657.
———. 2012.
“Computing with Neural Synchrony.” PLoS Comput Biol 8 (6): e1002561.
https://doi.org/10.1371/journal.pcbi.1002561.
Buhusi, Catalin V., and Warren H. Meck. 2005.
“What Makes Us Tick? Functional and Neural Mechanisms of Interval Timing.” Nature Reviews Neuroscience 6 (10): 755–65.
https://doi.org/10.1038/nrn1764.
Cadieu, C. F. 2014.
“Deep Neural Networks Rival the Representation of Primate It Cortex for Core Visual Object Recognition.” PLoS Comp. Biol. 10: e1003963.
https://doi.org/10.1371/journal.pcbi.1003963.
Eden, U, L Frank, R Barbieri, V Solo, and E Brown. 2004.
“Dynamic Analysis of Neural Encoding by Point Process Adaptive Filtering.” Neural Computation 16 (5): 971–98.
https://doi.org/10.1162/089976604773135069.
Elman, Jeffrey L. 1990.
“Finding Structure in Time.” Cognitive Science 14: 179–211.
https://doi.org/10.1016/0364-0213(90)90002-E.
———. 1993.
“Learning and Development in Neural Networks: The Importance of Starting Small.” Cognition 48: 71–99.
https://doi.org/10.1016/0010-0277(93)90058-4.
Fee, Michale S, Alexay A Kozhevnikov, and Richard H Hahnloser. 2004.
“Neural Mechanisms of Vocal Sequence Generation in the Songbird.” Annals of the New York Academy of Sciences 1016: 153–70.
https://doi.org/10.1196/annals.1298.022.
Fernández, Pau, and Ricard V Solé. 2007.
“Neutral Fitness Landscapes in Signalling Networks.” Journal of The Royal Society Interface 4 (12): 41.
https://doi.org/10.1098/rsif.2006.0152.
Haslinger, Robert, Gordon Pipa, and Emery Brown. 2010.
“Discrete Time Rescaling Theorem: Determining Goodness of Fit for Discrete Time Statistical Models of Neural Spiking.” Neural Computation 22 (10): 2477–2506.
https://doi.org/10.1162/NECO_a_00015.
Jin, Dezhe Z. 2009.
“Generating Variable Birdsong Syllable Sequences with Branching Chain Networks in Avian Premotor Nucleus HVC.” Physical Review E 80 (5): 051902.
https://doi.org/10.1103/PhysRevE.80.051902.
Jin, Dezhe Z, and Alexay A Kozhevnikov. 2011.
“A Compact Statistical Model of the Song Syntax in Bengalese Finch.” PLoS Comput Biol 7 (3): –1001108.
https://doi.org/10.1371/journal.pcbi.1001108.
Kass, Robert E., Shun-Ichi Amari, Kensuke Arai, Emery N. Brown, Casey O. Diekman, Markus Diesmann, Brent Doiron, et al. 2018.
“Computational Neuroscience: Mathematical and Statistical Perspectives.” Annual Review of Statistics and Its Application 5 (1): 183–214.
https://doi.org/10.1146/annurev-statistics-041715-033733.
Katahira, Kentaro, Kenta Suzuki, Kazuo Okanoya, and Masato Okada. 2011.
“Complex Sequencing Rules of Birdsong Can Be Explained by Simple Hidden Markov Processes.” PLoS ONE 6 (9): –24516.
https://doi.org/10.1371/journal.pone.0024516.
Kutschireiter, Anna, Simone Carlo Surace, Henning Sprekeler, and Jean-Pascal Pfister. 2015a.
“A Neural Implementation for Nonlinear Filtering.” 2015.
http://arxiv.org/abs/1508.06818.
Kutschireiter, Anna, Simone C Surace, Henning Sprekeler, and Jean-Pascal Pfister. 2015b.
“Approximate Nonlinear Filtering with a Recurrent Neural Network.” BMC Neuroscience 16: P196.
https://doi.org/10.1186/1471-2202-16-S1-P196.
Lee, Honglak, Alexis Battle, Rajat Raina, and Andrew Y. Ng. 2007.
“Efficient Sparse Coding Algorithms.” Advances in Neural Information Processing Systems 19: 801.
https://papers.nips.cc/paper/2979-efficient-sparse-coding-algorithms.pdf.
Marcus, Gary, Adam Marblestone, and Thomas Dean. 2014.
“The Atoms of Neural Computation.” Science 346 (6209): 551–52.
https://doi.org/10.1126/science.1261661.
Olshausen, Bruno A., and David J. Field. 1996.
“Emergence of Simple-Cell Receptive Field Properties by Learning a Sparse Code for Natural Images.” Nature 381 (6583): 607–9.
https://doi.org/10.1038/381607a0.
Olshausen, Bruno A, and David J Field. 2004.
“Sparse Coding of Sensory Inputs.” Current Opinion in Neurobiology 14 (4): 481–87.
https://doi.org/10.1016/j.conb.2004.07.007.
Orellana, Josue, Jordan Rodu, and Robert E. Kass. 2017.
“Population Vectors Can Provide Near Optimal Integration of Information.” Neural Computation 29 (8): 2021–29.
https://doi.org/10.1162/neco_a_00992.
Parallel Distributed Processing: Explorations in the Microstructure of Cognition. 1986. MIT Press.
Sandkühler, J., and A. A. Eblen-Zajjur. 1994.
“Identification and Characterization of Rhythmic Nociceptive and Non-Nociceptive Spinal Dorsal Horn Neurons in the Rat.” Neuroscience 61 (4): 991–1006.
https://doi.org/10.1016/0306-4522(94)90419-7.
Sasahara, Kazutoshi, Martin L. Cody, David Cohen, and Charles E. Taylor. 2012.
“Structural Design Principles of Complex Bird Songs: A Network-Based Approach.” PLoS ONE 7 (9): –44436.
https://doi.org/10.1371/journal.pone.0044436.
Shen, Yanning, Brian Baingana, and Georgios B. Giannakis. 2016.
“Nonlinear Structural Vector Autoregressive Models for Inferring Effective Brain Network Connectivity.” October 20, 2016.
http://arxiv.org/abs/1610.06551.
Simoncelli, Eero P, and Bruno A Olshausen. 2001.
“Natural Image Statistics and Neural Representation.” Annual Review of Neuroscience 24 (1): 1193–1216.
https://doi.org/10.1146/annurev.neuro.24.1.1193.
Smith, A, and E Brown. 2003.
“Estimating a State-Space Model from Point Process Observations.” Neural Computation 15 (5): 965–91.
https://doi.org/10.1162/089976603765202622.
Smith, Evan C., and Michael S. Lewicki. 2004.
“Learning Efficient Auditory Codes Using Spikes Predicts Cochlear Filters.” In
Advances in Neural Information Processing Systems, 1289–96.
http://machinelearning.wustl.edu/mlpapers/paper_files/NIPS2005_832.pdf.
———. 2006.
“Efficient Auditory Coding.” Nature 439 (7079): 978–82.
https://doi.org/10.1038/nature04485.
Smith, Evan, and Michael S. Lewicki. 2005.
“Efficient Coding of Time-Relative Structure Using Spikes.” Neural Computation 17 (1): 19–45.
https://doi.org/10.1162/0899766052530839.
Stolk, Arjen, Matthijs L. Noordzij, Lennart Verhagen, Inge Volman, Jan-Mathijs Schoffelen, Robert Oostenveld, Peter Hagoort, and Ivan Toni. 2014.
“Cerebral Coherence Between Communicators Marks the Emergence of Meaning.” Proceedings of the National Academy of Sciences 111 (51): 18183–88.
https://doi.org/10.1073/pnas.1414886111.
Strong, Steven P, Roland Koberle, Rob R de Ruyter van Steveninck, and William Bialek. 1998.
“Entropy and Information in Neural Spike Trains.” Phys. Rev. Lett. 80 (1): 197–200.
https://doi.org/10.1103/PhysRevLett.80.197.
Vargas-Irwin, Carlos E., David M. Brandman, Jonas B. Zimmermann, John P. Donoghue, and Michael J. Black. 2015.
“Spike Train SIMilarity Space (SSIMS): A Framework for Single Neuron and Ensemble Data Analysis.” Neural Computation 27 (1): 1–31.
https://doi.org/10.1162/NECO_a_00684.
Volgushev, Maxim, Vladimir Ilin, and Ian H. Stevenson. 2015.
“Identifying and Tracking Simulated Synaptic Inputs from Neuronal Firing: Insights from In Vitro Experiments.” PLoS Computational Biology 11 (3).
https://doi.org/10.1371/journal.pcbi.1004167.
Zeki, Semir, John Paul Romaya, Dionigi M. T. Benincasa, and Michael F. Atiyah. 2014.
“The Experience of Mathematical Beauty and Its Neural Correlates.” Frontiers in Human Neuroscience 8.
https://doi.org/10.3389/fnhum.2014.00068.