Achlioptas, Dimitris. 2003.
βDatabase-Friendly Random Projections: Johnson-Lindenstrauss with Binary Coins.β Journal of Computer and System Sciences, Special Issue on PODS 2001, 66 (4): 671β87.
Azizyan, Martin, Akshay Krishnamurthy, and Aarti Singh. 2015.
βExtreme Compressive Sampling for Covariance Estimation.β arXiv:1506.00898 [Cs, Math, Stat], June.
Bach, Francis, Rodolphe Jenatton, and Julien Mairal. 2011.
Optimization With Sparsity-Inducing Penalties. Foundations and Trends(r) in Machine Learning 1.0. Now Publishers Inc.
Baraniuk, Richard G. 2007.
βCompressive Sensing.β IEEE Signal Processing Magazine 24 (4).
βββ. 2008.
βSingle-Pixel Imaging via Compressive Sampling.β IEEE Signal Processing Magazine 25 (2): 83β91.
Baraniuk, Richard G., Volkan Cevher, Marco F. Duarte, and Chinmay Hegde. 2010.
βModel-Based Compressive Sensing.β IEEE Transactions on Information Theory 56 (4): 1982β2001.
Baraniuk, Richard, Mark Davenport, Ronald DeVore, and Michael Wakin. 2008.
βA Simple Proof of the Restricted Isometry Property for Random Matrices.β Constructive Approximation 28 (3): 253β63.
Baron, Dror, Shriram Sarvotham, and Richard G. Baraniuk. 2010.
βBayesian Compressive Sensing via Belief Propagation.β IEEE Transactions on Signal Processing 58 (1): 269β80.
Bayati, Mohsen, and Andrea Montanari. 2011.
βThe Dynamics of Message Passing on Dense Graphs, with Applications to Compressed Sensing.β IEEE Transactions on Information Theory 57 (2): 764β85.
Berger, Bonnie, Noah M. Daniels, and Y. William Yu. 2016.
βComputational Biology in the 21st Century: Scaling with Compressive Algorithms.β Communications of the ACM 59 (8): 72β80.
Bingham, Ella, and Heikki Mannila. 2001.
βRandom Projection in Dimensionality Reduction: Applications to Image and Text Data.β In
Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 245β50. KDD β01. New York, NY, USA: ACM.
Blanchard, Jeffrey D. 2013.
βToward Deterministic Compressed Sensing.β Proceedings of the National Academy of Sciences 110 (4): 1146β47.
Bora, Ashish, Ajil Jalal, Eric Price, and Alexandros G. Dimakis. 2017.
βCompressed Sensing Using Generative Models.β In
International Conference on Machine Learning, 537β46.
Borgerding, Mark, and Philip Schniter. 2016.
βOnsager-Corrected Deep Networks for Sparse Linear Inverse Problems.β arXiv:1612.01183 [Cs, Math], December.
Bruckstein, A. M., Michael Elad, and M. Zibulevsky. 2008a.
βSparse Non-Negative Solution of a Linear System of Equations Is Unique.β In
3rd International Symposium on Communications, Control and Signal Processing, 2008. ISCCSP 2008, 762β67.
Cai, T. Tony, Guangwu Xu, and Jun Zhang. 2008.
βOn Recovery of Sparse Signals via β1 Minimization.β arXiv:0805.0149 [Cs], May.
Cai, T. Tony, and Anru Zhang. 2015.
βROP: Matrix Recovery via Rank-One Projections.β The Annals of Statistics 43 (1): 102β38.
Candès, Emmanuel J. 2014.
βMathematics of Sparsity (and Few Other Things).β ICM 2014 Proceedings, to Appear.
Candès, Emmanuel J., and Mark A. Davenport. 2011.
βHow Well Can We Estimate a Sparse Vector?β arXiv:1104.5246 [Cs, Math, Stat], April.
Candès, Emmanuel J., Yonina C. Eldar, Deanna Needell, and Paige Randall. 2011.
βCompressed Sensing with Coherent and Redundant Dictionaries.β Applied and Computational Harmonic Analysis 31 (1): 59β73.
Candès, Emmanuel J., and Benjamin Recht. 2009.
βExact Matrix Completion via Convex Optimization.β Foundations of Computational Mathematics 9 (6): 717β72.
Candès, Emmanuel J., J. Romberg, and T. Tao. 2006a.
βRobust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information.β IEEE Transactions on Information Theory 52 (2): 489β509.
Candès, Emmanuel J., Justin K. Romberg, and Terence Tao. 2006b.
βStable Signal Recovery from Incomplete and Inaccurate Measurements.β Communications on Pure and Applied Mathematics 59 (8): 1207β23.
Candès, Emmanuel J., and Terence Tao. 2006.
βNear-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?β IEEE Transactions on Information Theory 52 (12): 5406β25.
βββ. 2008. βThe Uniform Uncertainty Principle and Compressed Sensing.β
Candès, Emmanuel J., and M.B. Wakin. 2008.
βAn Introduction To Compressive Sampling.β IEEE Signal Processing Magazine 25 (2): 21β30.
Candès, Emmanuel, and Terence Tao. 2005.
βDecoding by Linear Programming.β IEEE Transactions on Information Theory 51 (12): 4203β15.
Carmi, Avishy Y. 2013.
βCompressive System Identification: Sequential Methods and Entropy Bounds.β Digital Signal Processing 23 (3): 751β70.
βββ. 2014.
βCompressive System Identification.β In
Compressed Sensing & Sparse Filtering, edited by Avishy Y. Carmi, Lyudmila Mihaylova, and Simon J. Godsill, 281β324. Signals and Communication Technology. Springer Berlin Heidelberg.
Cevher, Volkan, Marco F. Duarte, Chinmay Hegde, and Richard Baraniuk. 2009.
βSparse Signal Recovery Using Markov Random Fields.β In
Advances in Neural Information Processing Systems, 257β64. Curran Associates, Inc.
Chartrand, R., and Wotao Yin. 2008.
βIteratively Reweighted Algorithms for Compressive Sensing.β In
IEEE International Conference on Acoustics, Speech and Signal Processing, 2008. ICASSP 2008, 3869β72.
Chen, Xiaojun. 2012.
βSmoothing Methods for Nonsmooth, Nonconvex Minimization.β Mathematical Programming 134 (1): 71β99.
Chen, Xiaojun, and Weijun Zhou. 2013.
βConvergence of the Reweighted β.β Computational Optimization and Applications 59 (1-2): 47β61.
Chretien, Stephane. 2008.
βAn Alternating L1 Approach to the Compressed Sensing Problem.β arXiv:0809.0660 [Stat], September.
Dasgupta, Sanjoy. 2000.
βExperiments with Random Projection.β In
Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence, 143β51. UAIβ00. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
Dasgupta, Sanjoy, and Anupam Gupta. 2003.
βAn Elementary Proof of a Theorem of Johnson and Lindenstrauss.β Random Structures & Algorithms 22 (1): 60β65.
Dasgupta, Sanjoy, Daniel Hsu, and Nakul Verma. 2006.
βA Concentration Theorem for Projections.β In
Proceedings of the Twenty-Second Conference on Uncertainty in Artificial Intelligence, 114β21. UAIβ06. Arlington, Virginia, USA: AUAI Press.
Daubechies, I., M. Defrise, and C. De Mol. 2004.
βAn Iterative Thresholding Algorithm for Linear Inverse Problems with a Sparsity Constraint.β Communications on Pure and Applied Mathematics 57 (11): 1413β57.
Daubechies, Ingrid, Ronald DeVore, Massimo Fornasier, and C. SiΜnan GΓΌntΓΌrk. 2010.
βIteratively Reweighted Least Squares Minimization for Sparse Recovery.β Communications on Pure and Applied Mathematics 63 (1): 1β38.
DeVore, Ronald A. 1998.
βNonlinear Approximation.β Acta Numerica 7 (January): 51β150.
Diaconis, Persi, and David Freedman. 1984.
βAsymptotics of Graphical Projection Pursuit.β The Annals of Statistics 12 (3): 793β815.
Donoho, D. L., M. Elad, and V. N. Temlyakov. 2006.
βStable Recovery of Sparse Overcomplete Representations in the Presence of Noise.β IEEE Transactions on Information Theory 52 (1): 6β18.
Donoho, David L. 2006.
βCompressed Sensing.β IEEE Transactions on Information Theory 52 (4): 1289β1306.
Donoho, David L., and Michael Elad. 2003.
βOptimally Sparse Representation in General (Nonorthogonal) Dictionaries via β1 Minimization.β Proceedings of the National Academy of Sciences 100 (5): 2197β2202.
Donoho, David L., A. Maleki, and A. Montanari. 2010.
βMessage Passing Algorithms for Compressed Sensing: I. Motivation and Construction.β In
2010 IEEE Information Theory Workshop (ITW), 1β5.
Donoho, David L., Arian Maleki, and Andrea Montanari. 2009a.
βMessage-Passing Algorithms for Compressed Sensing.β Proceedings of the National Academy of Sciences 106 (45): 18914β19.
βββ. 2009b.
βMessage Passing Algorithms for Compressed Sensing: II. Analysis and Validation.β In
2010 IEEE Information Theory Workshop (ITW), 1β5.
Duarte, Marco F., and Richard G. Baraniuk. 2013.
βSpectral Compressive Sensing.β Applied and Computational Harmonic Analysis 35 (1): 111β29.
Flammia, Steven T., David Gross, Yi-Kai Liu, and Jens Eisert. 2012.
βQuantum Tomography via Compressed Sensing: Error Bounds, Sample Complexity, and Efficient Estimators.β New Journal of Physics 14 (9): 095022.
Foygel, Rina, and Nathan Srebro. 2011.
βFast-Rate and Optimistic-Rate Error Bounds for L1-Regularized Regression.β arXiv:1108.0373 [Math, Stat], August.
Freund, Yoav, Sanjoy Dasgupta, Mayank Kabra, and Nakul Verma. 2007.
βLearning the Structure of Manifolds Using Random Projections.β In
Advances in Neural Information Processing Systems, 473β80.
Giryes, R., G. Sapiro, and A. M. Bronstein. 2016.
βDeep Neural Networks with Random Gaussian Weights: A Universal Classification Strategy?β IEEE Transactions on Signal Processing 64 (13): 3444β57.
Graff, Christian G., and Emil Y. Sidky. 2015.
βCompressive Sensing in Medical Imaging.β Applied Optics 54 (8): C23β44.
Hall, Peter, and Ker-Chau Li. 1993.
βOn Almost Linearity of Low Dimensional Projections from High Dimensional Data.β The Annals of Statistics 21 (2): 867β89.
Harchaoui, Zaid, Anatoli Juditsky, and Arkadi Nemirovski. 2015.
βConditional Gradient Algorithms for Norm-Regularized Smooth Convex Optimization.β Mathematical Programming 152 (1-2): 75β112.
Hassanieh, Haitham, Piotr Indyk, Dina Katabi, and Eric Price. 2012.
βNearly Optimal Sparse Fourier Transform.β In
Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing, 563β78. STOC β12. New York, NY, USA: ACM.
Hassanieh, H., P. Indyk, D. Katabi, and E. Price. 2012.
βSimple and Practical Algorithm for Sparse Fourier Transform.β In
Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, 1183β94. Proceedings. Kyoto, Japan: Society for Industrial and Applied Mathematics.
Hegde, Chinmay, and Richard G. Baraniuk. 2012.
βSignal Recovery on Incoherent Manifolds.β IEEE Transactions on Information Theory 58 (12): 7204β14.
Hormati, A., O. Roy, Y.M. Lu, and M. Vetterli. 2010.
βDistributed Sampling of Signals Linked by Sparse Filtering: Theory and Applications.β IEEE Transactions on Signal Processing 58 (3): 1095β1109.
Hoyer, Patrik O. n.d.
βNon-Negative Matrix Factorization with Sparseness Constraints.β Journal of Machine Learning Research 5 (9): 1457β69.
Jaggi, Martin. 2013.
βRevisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization.β In
Journal of Machine Learning Research, 427β35.
Jung, Alexander, Reinhard Heckel, Helmut BΓΆlcskei, and Franz Hlawatsch. 2013.
βCompressive Nonparametric Graphical Model Selection For Time Series.β arXiv:1311.3257 [Stat], November.
KabΓ‘n, Ata. 2014.
βNew Bounds on Compressive Linear Least Squares Regression.β In
Journal of Machine Learning Research, 448β56.
Kim, Daeun, and Justin P. Haldar. 2016.
βGreedy Algorithms for Nonnegativity-Constrained Simultaneous Sparse Recovery.β Signal Processing 125 (August): 274β89.
Lahiri, Subhaneil, Peiran Gao, and Surya Ganguli. 2016.
βRandom Projections of Random Manifolds.β arXiv:1607.04331 [Cs, q-Bio, Stat], July.
Launay, Julien, Iacopo Poli, FranΓ§ois Boniface, and Florent Krzakala. 2020.
βDirect Feedback Alignment Scales to Modern Deep Learning Tasks and Architectures.β In
Advances in Neural Information Processing Systems, 33:15.
Li, Ping, Trevor J. Hastie, and Kenneth W. Church. 2006.
βVery Sparse Random Projections.β In
Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 287β96. KDD β06. New York, NY, USA: ACM.
Matei, Basarab, and Yves Meyer. 2010.
βSimple Quasicrystals Are Sets of Stable Sampling.β Complex Variables and Elliptic Equations 55 (8-10): 947β64.
Mishali, Moshe, and Yonina C. Eldar. 2010.
βFrom Theory to Practice: Sub-Nyquist Sampling of Sparse Wideband Analog Signals.β IEEE Journal of Selected Topics in Signal Processing 4 (2): 375β91.
Montanari, Andrea. 2012.
βGraphical Models Concepts in Compressed Sensing.β Compressed Sensing: Theory and Applications, 394β438.
Needell, D., and J. A. Tropp. 2008.
βCoSaMP: Iterative Signal Recovery from Incomplete and Inaccurate Samples.β arXiv:0803.2392 [Cs, Math], March.
Oka, A, and L. Lampe. 2008.
βCompressed Sensing of Gauss-Markov Random Field with Wireless Sensor Networks.β In
5th IEEE Sensor Array and Multichannel Signal Processing Workshop, 2008. SAM 2008, 257β60.
Olshausen, B. A., and D. J. Field. 1996.
βNatural image statistics and efficient coding.β Network (Bristol, England) 7 (2): 333β39.
Olshausen, Bruno A, and David J Field. 2004.
βSparse Coding of Sensory Inputs.β Current Opinion in Neurobiology 14 (4): 481β87.
Oxvig, Christian Schou, Thomas Arildsen, and Torben Larsen. 2017.
βGeneralized Approximate Message Passing: Relations and Derivations.β Aalborg University.
Pawar, Sameer, and Kannan Ramchandran. 2015.
βA Robust Sub-Linear Time R-FFAST Algorithm for Computing a Sparse DFT.β arXiv:1501.00320 [Cs, Math], January.
Peleg, Tomer, Yonina C. Eldar, and Michael Elad. 2010.
βExploiting Statistical Dependencies in Sparse Representations for Signal Recovery.β IEEE Transactions on Signal Processing 60 (5): 2286β2303.
Qiuyun Zou, Haochuan Zhang, Chao-Kai Wen, Shi Jin, and Rong Yu. 2018.
βConcise Derivation for Generalized Approximate Message Passing Using Expectation Propagation.β IEEE Signal Processing Letters 25 (12): 1835β39.
Rangan, Sundeep. 2011.
βGeneralized Approximate Message Passing for Estimation with Random Linear Mixing.β In
2011 IEEE International Symposium on Information Theory Proceedings, 2168β72. St.Β Petersburg, Russia: IEEE.
Ravishankar, S., and Y. Bresler. 2015.
βSparsifying Transform Learning With Efficient Optimal Updates and Convergence Guarantees.β IEEE Transactions on Signal Processing 63 (9): 2389β2404.
Rish, Irina, and Genady Grabarnik. 2014.
βSparse Signal Recovery with Exponential-Family Noise.β In
Compressed Sensing & Sparse Filtering, edited by Avishy Y. Carmi, Lyudmila Mihaylova, and Simon J. Godsill, 77β93. Signals and Communication Technology. Springer Berlin Heidelberg.
Rish, Irina, and Genady Ya Grabarnik. 2015. Sparse Modeling: Theory, Algorithms, and Applications. Chapman & Hall/CRC Machine Learning & Pattern Recognition Series. Boca Raton, FL: CRC Press, Taylor & Francis Group.
Romberg, J. 2008.
βImaging via Compressive Sampling.β IEEE Signal Processing Magazine 25 (2): 14β20.
Rosset, Saharon, and Ji Zhu. 2007.
βPiecewise Linear Regularized Solution Paths.β The Annals of Statistics 35 (3): 1012β30.
Rubinstein, Ron, T. Peleg, and Michael Elad. 2013.
βAnalysis K-SVD: A Dictionary-Learning Algorithm for the Analysis Sparse Model.β IEEE Transactions on Signal Processing 61 (3): 661β77.
Sarvotham, Shriram, Dror Baron, and Richard G. Baraniuk. 2006.
βMeasurements Vs.Β Bits: Compressed Sensing Meets Information Theory.β In
In Proc. Allerton Conf. On Comm., Control, and Computing.
Schniter, P., and S. Rangan. 2012.
βCompressive Phase Retrieval via Generalized Approximate Message Passing.β In
2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 815β22.
Shalev-Shwartz, Shai, and Ambuj Tewari. 2011.
βStochastic Methods for L1-Regularized Loss Minimization.β Journal of Machine Learning Research 12 (July): 1865β92.
Smith, Virginia, Simone Forte, Michael I. Jordan, and Martin Jaggi. 2015.
βL1-Regularized Distributed Optimization: A Communication-Efficient Primal-Dual Framework.β arXiv:1512.04011 [Cs], December.
Song, Ruiyang, Yao Xie, and Sebastian Pokutta. 2015.
βSequential Information Guided Sensing.β arXiv:1509.00130 [Cs, Math, Stat], August.
Tropp, J. A., and S. J. Wright. 2010.
βComputational Methods for Sparse Solution of Linear Inverse Problems.β Proceedings of the IEEE 98 (6): 948β58.
Tropp, J.A. 2006.
βJust Relax: Convex Programming Methods for Identifying Sparse Signals in Noise.β IEEE Transactions on Information Theory 52 (3): 1030β51.
Vetterli, Martin. 1999.
βWavelets: Approximation and Compressionβa Review.β In
AeroSenseβ99, 3723:28β31. International Society for Optics and Photonics.
Weidmann, Claudio, and Martin Vetterli. 2012.
βRate Distortion Behavior of Sparse Sources.β IEEE Transactions on Information Theory 58 (8): 4969β92.
Wipf, David, and Srikantan Nagarajan. 2016.
βIterative Reweighted L1 and L2 Methods for Finding Sparse Solution.β Microsoft Research, July.
Wu, R., W. Huang, and D. R. Chen. 2013.
βThe Exact Support Recovery of Sparse Signals With Noise via Orthogonal Matching Pursuit.β IEEE Signal Processing Letters 20 (4): 403β6.
Wu, Yan, Mihaela Rosca, and Timothy Lillicrap. 2019.
βDeep Compressed Sensing.β In
International Conference on Machine Learning, 6850β60.
Yaghoobi, M., Sangnam Nam, R. Gribonval, and M.E. Davies. 2012.
βNoise Aware Analysis Operator Learning for Approximately Cosparse Signals.β In
2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 5409β12.
Yang, Wenzhuo, and Huan Xu. 2015.
βStreaming Sparse Principal Component Analysis.β In
Journal of Machine Learning Research, 494β503.
Zhang, Kai, Chuanren Liu, Jie Zhang, Hui Xiong, Eric Xing, and Jieping Ye. 2017.
βRandomization or Condensation?: Linear-Cost Matrix Sketching Via Cascaded Compression Sampling.β In
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 615β23. KDD β17. New York, NY, USA: ACM.
No comments yet. Why not leave one?