\[\renewcommand{\var}{\operatorname{Var}} \renewcommand{\cov}{\operatorname{Cov}} \renewcommand{\corr}{\operatorname{Corr}} \renewcommand{\dd}{\mathrm{d}} \renewcommand{\bb}[1]{\mathbb{#1}} \renewcommand{\vv}[1]{\boldsymbol{#1}} \renewcommand{\rv}[1]{\mathsf{#1}} \renewcommand{\vrv}[1]{\vv{\rv{#1}}} \renewcommand{\disteq}{\stackrel{d}{=}} \renewcommand{\dif}{\backslash} \renewcommand{\gvn}{\mid} \renewcommand{\Ex}{\mathbb{E}} \renewcommand{\Pr}{\mathbb{P}}\]
Notoriously, GP regression scales badly with dataset size, requiring us to invert a matrix full of observation covariances. But inverting a matrix is just solving a least square optimisation, when you think about it. So can we solve it by gradient descent and have it somehow come out cheaper? Maybe.
No comments yet. Why not leave one?