Abbasnejad, Ehsan, Anthony Dick, and Anton van den Hengel. 2016.
โInfinite Variational Autoencoder for Semi-Supervised Learning.โ In
Advances in Neural Information Processing Systems 29.
Archer, Evan, Il Memming Park, Lars Buesing, John Cunningham, and Liam Paninski. 2015.
โBlack Box Variational Inference for State Space Models.โ arXiv:1511.07367 [Stat], November.
Attias, Hagai. 1999.
โInferring Parameters and Structure of Latent Variable Models by Variational Bayes.โ In
Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, 21โ30. UAIโ99. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
Bamler, Robert, and Stephan Mandt. 2017.
โStructured Black Box Variational Inference for Latent Time Series Models.โ arXiv:1707.01069 [Cs, Stat], July.
Berg, Rianne van den, Leonard Hasenclever, Jakub M. Tomczak, and Max Welling. 2018.
โSylvester Normalizing Flows for Variational Inference.โ In
UAI18.
Bishop, Christopher. 1994.
โMixture Density Networks.โ Microsoft Research, January.
Blei, David M., Alp Kucukelbir, and Jon D. McAuliffe. 2017.
โVariational Inference: A Review for Statisticians.โ Journal of the American Statistical Association 112 (518): 859โ77.
Burt, David R., Carl Edward Rasmussen, and Mark van der Wilk. 2020.
โConvergence of Sparse Variational Inference in Gaussian Processes Regression.โ Journal of Machine Learning Research 21 (131): 1โ63.
Caterini, Anthony L., Arnaud Doucet, and Dino Sejdinovic. 2018.
โHamiltonian Variational Auto-Encoder.โ In
Advances in Neural Information Processing Systems.
Chen, Tian Qi, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. 2018.
โNeural Ordinary Differential Equations.โ In
Advances in Neural Information Processing Systems 31, edited by S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, 6572โ83. Curran Associates, Inc.
Chung, Junyoung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C Courville, and Yoshua Bengio. 2015.
โA Recurrent Latent Variable Model for Sequential Data.โ In
Advances in Neural Information Processing Systems 28, edited by C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, 2980โ88. Curran Associates, Inc.
Cutajar, Kurt, Edwin V. Bonilla, Pietro Michiardi, and Maurizio Filippone. 2017.
โRandom Feature Expansions for Deep Gaussian Processes.โ In
PMLR.
Dhaka, Akash Kumar, and Alejandro Catalina. 2020. โRobust, Accurate Stochastic Optimization for Variational Inference,โ 13.
Dhaka, Akash Kumar, Alejandro Catalina, Manushi Welandawe, Michael Riis Andersen, Jonathan Huggins, and Aki Vehtari. 2021.
โChallenges and Opportunities in High-Dimensional Variational Inference.โ arXiv:2103.01085 [Cs, Stat], March.
Doerr, Andreas, Christian Daniel, Martin Schiegg, Duy Nguyen-Tuong, Stefan Schaal, Marc Toussaint, and Sebastian Trimpe. 2018.
โProbabilistic Recurrent State-Space Models.โ arXiv:1801.10395 [Stat], January.
Fabius, Otto, and Joost R. van Amersfoort. 2014.
โVariational Recurrent Auto-Encoders.โ In
Proceedings of ICLR.
Flunkert, Valentin, David Salinas, and Jan Gasthaus. 2017.
โDeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks.โ arXiv:1704.04110 [Cs, Stat], April.
Fortunato, Meire, Charles Blundell, and Oriol Vinyals. 2017.
โBayesian Recurrent Neural Networks.โ arXiv:1704.02798 [Cs, Stat], April.
Fraccaro, Marco, Sรธ ren Kaae Sรธ nderby, Ulrich Paquet, and Ole Winther. 2016.
โSequential Neural Models with Stochastic Layers.โ In
Advances in Neural Information Processing Systems 29, edited by D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, 2199โ2207. Curran Associates, Inc.
Frey, B.J., and Nebojsa Jojic. 2005.
โA Comparison of Algorithms for Inference and Learning in Probabilistic Graphical Models.โ IEEE Transactions on Pattern Analysis and Machine Intelligence 27 (9): 1392โ1416.
Futami, Futoshi, Issei Sato, and Masashi Sugiyama. 2017.
โVariational Inference Based on Robust Divergences.โ arXiv:1710.06595 [Stat], October.
Gagen, Michael J, and Kae Nemoto. 2006. โVariational Optimization of Probability Measure Spaces Resolves the Chain Store Paradox.โ
Giordano, Ryan, Tamara Broderick, and Michael I. Jordan. 2017.
โCovariances, Robustness, and Variational Bayes.โ arXiv:1709.02536 [Stat], September.
Grathwohl, Will, Ricky T. Q. Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud. 2018.
โFFJORD: Free-Form Continuous Dynamics for Scalable Reversible Generative Models.โ arXiv:1810.01367 [Cs, Stat], October.
Graves, Alex. 2011.
โPractical Variational Inference for Neural Networks.โ In
Proceedings of the 24th International Conference on Neural Information Processing Systems, 2348โ56. NIPSโ11. USA: Curran Associates Inc.
Gu, Shixiang, Zoubin Ghahramani, and Richard E Turner. 2015.
โNeural Adaptive Sequential Monte Carlo.โ In
Advances in Neural Information Processing Systems 28, edited by C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, 2629โ37. Curran Associates, Inc.
Gulrajani, Ishaan, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville. 2017.
โImproved Training of Wasserstein GANs.โ arXiv:1704.00028 [Cs, Stat], March.
He, Junxian, Daniel Spokoyny, Graham Neubig, and Taylor Berg-Kirkpatrick. 2019.
โLagging Inference Networks and Posterior Collapse in Variational Autoencoders.โ In
PRoceedings of ICLR.
Hinton, G. E. 1995.
โThe Wake-Sleep Algorithm for Unsupervised Neural Networks.โ Science 268 (5214): 1558โ1161.
Hoffman, Matt, David M. Blei, Chong Wang, and John Paisley. 2013.
โStochastic Variational Inference.โ arXiv:1206.7051 [Cs, Stat] 14 (1).
Hoffman, Matthew, and David Blei. 2015.
โStochastic Structured Variational Inference.โ In
PMLR, 361โ69.
Huang, Chin-Wei, David Krueger, Alexandre Lacoste, and Aaron Courville. 2018.
โNeural Autoregressive Flows.โ arXiv:1804.00779 [Cs, Stat], April.
Huggins, Jonathan H., Mikoลaj Kasprzak, Trevor Campbell, and Tamara Broderick. 2019.
โPractical Posterior Error Bounds from Variational Objectives.โ arXiv:1910.04102 [Cs, Math, Stat], October.
Jaakkola, Tommi S., and Michael I. Jordan. 1998.
โImproving the Mean Field Approximation Via the Use of Mixture Distributions.โ In
Learning in Graphical Models, 163โ73. NATO ASI Series. Springer, Dordrecht.
Jordan, Michael I., Zoubin Ghahramani, Tommi S. Jaakkola, and Lawrence K. Saul. 1999.
โAn Introduction to Variational Methods for Graphical Models.โ Machine Learning 37 (2): 183โ233.
Karl, Maximilian, Maximilian Soelch, Justin Bayer, and Patrick van der Smagt. 2016.
โDeep Variational Bayes Filters: Unsupervised Learning of State Space Models from Raw Data.โ In
Proceedings of ICLR.
Kingma, Diederik P., Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling. 2016.
โImproving Variational Inference with Inverse Autoregressive Flow.โ In
Advances in Neural Information Processing Systems 29. Curran Associates, Inc.
Kingma, Diederik P., Tim Salimans, and Max Welling. 2015.
โVariational Dropout and the Local Reparameterization Trick.โ In
Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2, 2575โ83. NIPSโ15. Cambridge, MA, USA: MIT Press.
Kingma, Diederik P., and Max Welling. 2014.
โAuto-Encoding Variational Bayes.โ In
ICLR 2014 Conference.
Kingma, Durk P, and Prafulla Dhariwal. 2018.
โGlow: Generative Flow with Invertible 1x1 Convolutions.โ In
Advances in Neural Information Processing Systems 31, edited by S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, 10236โ45. Curran Associates, Inc.
Larsen, Anders Boesen Lindbo, Sรธren Kaae Sรธnderby, Hugo Larochelle, and Ole Winther. 2015.
โAutoencoding Beyond Pixels Using a Learned Similarity Metric.โ arXiv:1512.09300 [Cs, Stat], December.
Leibfried, Felix, Vincent Dutordoir, S. T. John, and Nicolas Durrande. 2022.
โA Tutorial on Sparse Gaussian Processes and Variational Inference.โ arXiv.
Li, Yingzhen, and Richard E Turner. 2016.
โRรฉnyi Divergence Variational Inference.โ In
Advances in Neural Information Processing Systems, 29:1081โ89. Red Hook, NY, USA: Curran Associates, Inc.
Liu, Huidong, Xianfeng Gu, and Dimitris Samaras. 2018.
โA Two-Step Computation of the Exact GAN Wasserstein Distance.โ In
International Conference on Machine Learning, 3159โ68.
Liu, Qiang, and Dilin Wang. 2019.
โStein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm.โ In
Advances In Neural Information Processing Systems.
Louizos, Christos, Uri Shalit, Joris M Mooij, David Sontag, Richard Zemel, and Max Welling. 2017.
โCausal Effect Inference with Deep Latent-Variable Models.โ In
Advances in Neural Information Processing Systems 30, edited by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, 6446โ56. Curran Associates, Inc.
Louizos, Christos, and Max Welling. 2016.
โStructured and Efficient Variational Deep Learning with Matrix Gaussian Posteriors.โ In
arXiv Preprint arXiv:1603.04733, 1708โ16.
Luts, Jan. 2015.
โReal-Time Semiparametric Regression for Distributed Data Sets.โ IEEE Transactions on Knowledge and Data Engineering 27 (2): 545โ57.
Luts, J., T. Broderick, and M. P. Wand. 2014.
โReal-Time Semiparametric Regression.โ Journal of Computational and Graphical Statistics 23 (3): 589โ615.
MacKay, David J C. 2002a.
โGaussian Processes.โ In
Information Theory, Inference & Learning Algorithms, Chapter 45. Cambridge University Press.
โโโ. 2002b. Information Theory, Inference & Learning Algorithms. Cambridge University Press.
Maddison, Chris J., Dieterich Lawson, George Tucker, Nicolas Heess, Mohammad Norouzi, Andriy Mnih, Arnaud Doucet, and Yee Whye Teh. 2017.
โFiltering Variational Objectives.โ arXiv Preprint arXiv:1705.09279.
Mahdian, Saied, Jose Blanchet, and Peter Glynn. 2019.
โOptimal Transport Relaxations with Application to Wasserstein GANs.โ arXiv:1906.03317 [Cs, Math, Stat], June.
Marzouk, Youssef, Tarek Moselhy, Matthew Parno, and Alessio Spantini. 2016.
โSampling via Measure Transport: An Introduction.โ In
Handbook of Uncertainty Quantification, edited by Roger Ghanem, David Higdon, and Houman Owhadi, 1:1โ41. Cham: Springer Heidelberg.
Matthews, Alexander Graeme de Garis. 2017.
โScalable Gaussian Process Inference Using Variational Methods.โ Thesis, University of Cambridge.
Meent, Jan-Willem van de, Brooks Paige, Hongseok Yang, and Frank Wood. 2021.
โAn Introduction to Probabilistic Programming.โ arXiv:1809.10756 [Cs, Stat], October.
Minka, Thomas P. 2001.
โExpectation Propagation for Approximate Bayesian Inference.โ In
Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence, 362โ69. UAIโ01. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
Molchanov, Dmitry, Arsenii Ashukha, and Dmitry Vetrov. 2017.
โVariational Dropout Sparsifies Deep Neural Networks.โ In
Proceedings of ICML.
Ng, Ignavier, Shengyu Zhu, Zhitang Chen, and Zhuangyan Fang. 2019.
โA Graph Autoencoder Approach to Causal Structure Learning.โ In
Advances In Neural Information Processing Systems.
Nolan, Tui H., Marianne Menictas, and Matt P. Wand. 2020.
โStreamlined Variational Inference with Higher Level Random Effects.โ Journal of Machine Learning Research 21 (157): 1โ62.
Ormerod, J. T., and M. P. Wand. 2010.
โExplaining Variational Approximations.โ The American Statistician 64 (2): 140โ53.
Papamakarios, George, Iain Murray, and Theo Pavlakou. 2017.
โMasked Autoregressive Flow for Density Estimation.โ In
Advances in Neural Information Processing Systems 30, edited by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, 2338โ47. Curran Associates, Inc.
Pereyra, M., P. Schniter, ร Chouzenoux, J. C. Pesquet, J. Y. Tourneret, A. O. Hero, and S. McLaughlin. 2016.
โA Survey of Stochastic Simulation and Optimization Methods in Signal Processing.โ IEEE Journal of Selected Topics in Signal Processing 10 (2): 224โ41.
Plรถtz, Tobias, Anne S. Wannenwetsch, and Stefan Roth. 2018.
โStochastic Variational Inference with Gradient Linearization.โ In
CVPR.
Ranganath, Rajesh, Dustin Tran, Jaan Altosaar, and David Blei. 2016.
โOperator Variational Inference.โ In
Advances in Neural Information Processing Systems 29, edited by D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, 496โ504. Curran Associates, Inc.
Ranganath, Rajesh, Dustin Tran, and David Blei. 2016.
โHierarchical Variational Models.โ In
PMLR, 324โ33.
Rezende, Danilo Jimenez, and Shakir Mohamed. 2015.
โVariational Inference with Normalizing Flows.โ In
International Conference on Machine Learning, 1530โ38. ICMLโ15. Lille, France: JMLR.org.
Rezende, Danilo Jimenez, Shakir Mohamed, and Daan Wierstra. 2015.
โStochastic Backpropagation and Approximate Inference in Deep Generative Models.โ In
Proceedings of ICML.
Roychowdhury, Anirban, and Brian Kulis. 2015.
โGamma Processes, Stick-Breaking, and Variational Inference.โ In
Artificial Intelligence and Statistics, 800โ808. PMLR.
Ruiz, Francisco J. R., Michalis K. Titsias, and David M. Blei. 2016.
โThe Generalized Reparameterization Gradient.โ In
Advances In Neural Information Processing Systems.
Ryder, Thomas, Andrew Golightly, A. Stephen McGough, and Dennis Prangle. 2018.
โBlack-Box Variational Inference for Stochastic Differential Equations.โ arXiv:1802.03335 [Stat], February.
Salimans, Tim, Diederik Kingma, and Max Welling. 2015.
โMarkov Chain Monte Carlo and Variational Inference: Bridging the Gap.โ In
Proceedings of the 32nd International Conference on Machine Learning (ICML-15), 1218โ26. ICMLโ15. Lille, France: JMLR.org.
Schervish, Mark J. 2012.
Theory of Statistics. Springer Series in Statistics. New York, NY: Springer Science & Business Media.
Spantini, Alessio, Daniele Bigoni, and Youssef Marzouk. 2017.
โInference via Low-Dimensional Couplings.โ Journal of Machine Learning Research 19 (66): 2639โ709.
Staines, Joe, and David Barber. 2012.
โVariational Optimization.โ arXiv:1212.4507 [Cs, Stat], December.
Titsias, Michalis K., and Miguel Lรกzaro-Gredilla. 2014.
โDoubly Stochastic Variational Bayes for Non-Conjugate Inference.โ In
Proceedings of the 31st International Conference on International Conference on Machine Learning - Volume 32, II-1971โII-1980. ICMLโ14. Beijing, China: JMLR.org.
Wainwright, Martin J., and Michael I. Jordan. 2008.
Graphical Models, Exponential Families, and Variational Inference. Vol. 1. Foundations and Trendsยฎ in Machine Learning. Now Publishers.
Wainwright, Martin, and Michael I Jordan. 2005. โA Variational Principle for Graphical Models.โ In New Directions in Statistical Signal Processing. Vol. 155. MIT Press.
Wang, Yixin, and David M. Blei. 2017.
โFrequentist Consistency of Variational Bayes.โ arXiv:1705.03439 [Cs, Math, Stat], May.
Wiegerinck, Wim. 2000.
โVariational Approximations Between Mean Field Theory and the Junction Tree Algorithm.โ In
Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence, 626โ33. UAI โ00. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
Wingate, David, and Theophane Weber. 2013.
โAutomated Variational Inference in Probabilistic Programming.โ arXiv:1301.1299 [Cs, Stat], January.
Winn, John M., and Christopher M. Bishop. 2005.
โVariational Message Passing.โ In
Journal of Machine Learning Research, 661โ94.
Xing, Eric P., Michael I. Jordan, and Stuart Russell. 2003.
โA Generalized Mean Field Algorithm for Variational Inference in Exponential Families.โ In
Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence, 583โ91. UAIโ03. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
Yao, Yuling, Aki Vehtari, Daniel Simpson, and Andrew Gelman. n.d. โYes, but Did It Work?: Evaluating Variational Inference,โ 18.
Yoshida, Ryo, and Mike West. 2010.
โBayesian Learning in Sparse Graphical Factor Models via Variational Mean-Field Annealing.โ Journal of Machine Learning Research 11 (May): 1771โ98.
Zahm, Olivier, Paul Constantine, Clรฉmentine Prieur, and Youssef Marzouk. 2018.
โGradient-Based Dimension Reduction of Multivariate Vector-Valued Functions.โ arXiv:1801.07922 [Math], January.
No comments yet. Why not leave one?