Dellaporta, Charita, Jeremias Knoblauch, Theodoros Damoulas, and François-Xavier Briol. 2022.
“Robust Bayesian Inference for Simulator-Based Models via the MMD Posterior Bootstrap.” arXiv:2202.04744 [Cs, Stat], February.
Gretton, Arthur, Kenji Fukumizu, Choon Hui Teo, Le Song, Bernhard Schölkopf, and Alexander J Smola. 2008.
“A Kernel Statistical Test of Independence.” In
Advances in Neural Information Processing Systems 20: Proceedings of the 2007 Conference. Cambridge, MA: MIT Press.
Kress, Rainer. 2014.
Linear Integral Equations. Third edition. Applied Mathematical Sciences, volume 82. New York: Springer.
Muandet, Krikamol, Kenji Fukumizu, Bharath Sriperumbudur, Arthur Gretton, and Bernhard Schölkopf. 2014.
“Kernel Mean Shrinkage Estimators.” arXiv:1405.5505 [Cs, Stat], May.
Muandet, Krikamol, Kenji Fukumizu, Bharath Sriperumbudur, and Bernhard Schölkopf. 2017.
“Kernel Mean Embedding of Distributions: A Review and Beyond.” Foundations and Trends® in Machine Learning 10 (1-2): 1–141.
Nishiyama, Yu, and Kenji Fukumizu. 2016.
“Characteristic Kernels and Infinitely Divisible Distributions.” The Journal of Machine Learning Research 17 (1): 6240–67.
Polyanin, A. D., and A. V. Manzhirov. 1998. Handbook of Integral Equations. Boca Raton, Fla: CRC Press.
Reid, Mark D., and Robert C. Williamson. 2009.
“Generalised Pinsker Inequalities.” In
arXiv:0906.1244 [Cs, Math].
scetbon, meyer, and Gael Varoquaux. 2019.
“Comparing Distributions: \(\ell_1\) Geometry Improves Kernel Two-Sample Testing.” In
Advances in Neural Information Processing Systems 32, edited by H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc, E. Fox, and R. Garnett, 12306–16. Curran Associates, Inc.
Schölkopf, Bernhard, Krikamol Muandet, Kenji Fukumizu, and Jonas Peters. 2015.
“Computing Functions of Random Variables via Reproducing Kernel Hilbert Space Representations.” arXiv:1501.06794 [Cs, Stat], January.
Sejdinovic, Dino, Bharath Sriperumbudur, Arthur Gretton, and Kenji Fukumizu. 2012.
“Equivalence of Distance-Based and RKHS-Based Statistics in Hypothesis Testing.” The Annals of Statistics 41 (5): 2263–91.
Smola, Alex, Arthur Gretton, Le Song, and Bernhard Schölkopf. 2007.
“A Hilbert Space Embedding for Distributions.” In
Algorithmic Learning Theory, edited by Marcus Hutter, Rocco A. Servedio, and Eiji Takimoto, 13–31. Lecture Notes in Computer Science 4754. Springer Berlin Heidelberg.
Song, Le, Jonathan Huang, Alex Smola, and Kenji Fukumizu. 2009.
“Hilbert Space Embeddings of Conditional Distributions with Applications to Dynamical Systems.” In
Proceedings of the 26th Annual International Conference on Machine Learning, 961–68. ICML ’09. New York, NY, USA: ACM.
Sriperumbudur, B. K., A. Gretton, K. Fukumizu, G. Lanckriet, and B. Schölkopf. 2008.
“Injective Hilbert Space Embeddings of Probability Measures.” In
Proceedings of the 21st Annual Conference on Learning Theory (COLT 2008).
Sriperumbudur, Bharath K., Kenji Fukumizu, Arthur Gretton, Bernhard Schölkopf, and Gert R. G. Lanckriet. 2012.
“On the Empirical Estimation of Integral Probability Metrics.” Electronic Journal of Statistics 6: 1550–99.
Sriperumbudur, Bharath K., Arthur Gretton, Kenji Fukumizu, Bernhard Schölkopf, and Gert R. G. Lanckriet. 2010.
“Hilbert Space Embeddings and Metrics on Probability Measures.” Journal of Machine Learning Research 11 (April): 1517−1561.
Szabo, Zoltan, and Bharath K. Sriperumbudur. 2017.
“Characteristic and Universal Tensor Product Kernels.” arXiv:1708.08157 [Cs, Math, Stat], August.
Tolstikhin, Ilya O, Bharath K. Sriperumbudur, and Bernhard Schölkopf. 2016.
“Minimax Estimation of Maximum Mean Discrepancy with Radial Kernels.” In
Advances in Neural Information Processing Systems 29, edited by D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, 1930–38. Curran Associates, Inc.
Tricomi, F. G. 1985. Integral Equations. New York: Dover Publications.
Zhang, Kun, Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. 2012.
“Kernel-Based Conditional Independence Test and Application in Causal Discovery.” arXiv:1202.3775 [Cs, Stat], February.
Zhang, Qinyi, Sarah Filippi, Arthur Gretton, and Dino Sejdinovic. 2016.
“Large-Scale Kernel Methods for Independence Testing.” arXiv:1606.07892 [Stat], June.
No comments yet. Why not leave one?