Alaoui, Ahmed El, and Michael W. Mahoney. 2014.
“Fast Randomized Kernel Methods With Statistical Guarantees.” November 2, 2014.
http://arxiv.org/abs/1411.0306.
Altschuler, Jason, Francis Bach, Alessandro Rudi, and Jonathan Niles-Weed. 2019.
“Massively Scalable Sinkhorn Distances via the Nyström Method.” In
Advances in Neural Information Processing Systems 32, 11.
Curran Associates, Inc. https://papers.nips.cc/paper/8693-massively-scalable-sinkhorn-distances-via-the-nystrom-method.pdf.
Bach, Francis. 2015.
“On the Equivalence Between Kernel Quadrature Rules and Random Feature Expansions.” 2015.
http://arxiv.org/abs/1502.06800.
Bach, Francis R. 2013.
“Sharp Analysis of Low-Rank Kernel Matrix Approximations.” In
COLT, 30:185–209.
http://www.jmlr.org/proceedings/papers/v30/Bach13.pdf.
Bakır, Gökhan H., Jason Weston, and Bernhard Schölkopf. 2004.
“Learning to Find Pre-Images.” Advances in Neural Information Processing Systems 16 (7): 449–56.
http://www.kyb.mpg.de/fileadmin/user_upload/files/publications/pdf2262.pdf.
Beylkin, Gregory, and Lucas Monzón. 2010.
“Approximation by Exponential Sums Revisited.” Applied and Computational Harmonic Analysis 28 (2): 131–49.
https://doi.org/10.1016/j.acha.2009.08.011.
Brault, Romain, Florence d’Alché-Buc, and Markus Heinonen. 2016.
“Random Fourier Features for Operator-Valued Kernels.” In
Proceedings of The 8th Asian Conference on Machine Learning, 110–25.
http://arxiv.org/abs/1605.02536.
Brault, Romain, Néhémy Lim, and Florence d’Alché-Buc. n.d.
“Scaling up Vector Autoregressive Models With Operator-Valued Random Fourier Features.” Accessed August 31, 2016.
https://aaltd16.irisa.fr/files/2016/08/AALTD16_paper_11.pdf.
Choromanski, Krzysztof, Mark Rowland, and Adrian Weller. 2017.
“The Unreasonable Effectiveness of Random Orthogonal Embeddings.” March 2, 2017.
http://arxiv.org/abs/1703.00864.
Choromanski, Krzysztof, and Vikas Sindhwani. 2016.
“Recycling Randomness with Structure for Sublinear Time Kernel Expansions.” May 29, 2016.
http://arxiv.org/abs/1605.09049.
Cunningham, John P., Krishna V. Shenoy, and Maneesh Sahani. 2008.
“Fast Gaussian Process Methods for Point Process Intensity Estimation.” In
Proceedings of the 25th International Conference on Machine Learning, 192–99.
ICML ’08.
New York, NY, USA:
ACM Press.
https://doi.org/10.1145/1390156.1390181.
Curto, Joachim, Irene Zarza, Feng Yang, Alexander J. Smola, and Luc Van Gool. 2017.
“F2f: A Library For Fast Kernel Expansions.” February 27, 2017.
http://arxiv.org/abs/1702.08159.
Cutajar, Kurt, Edwin V. Bonilla, Pietro Michiardi, and Maurizio Filippone. 2017.
“Random Feature Expansions for Deep Gaussian Processes.” In
PMLR.
http://proceedings.mlr.press/v70/cutajar17a.html.
Drineas, Petros, and Michael W. Mahoney. 2005.
“On the Nyström Method for Approximating a Gram Matrix for Improved Kernel-Based Learning.” Journal of Machine Learning Research 6 (December): 2153–75.
http://jmlr.org/papers/volume6/drineas05a/drineas05a.pdf.
Globerson, Amir, and Roi Livni. 2016.
“Learning Infinite-Layer Networks: Beyond the Kernel Trick.” June 16, 2016.
http://arxiv.org/abs/1606.05316.
Kwok, J. T.-Y., and I. W.-H. Tsang. 2004.
“The Pre-Image Problem in Kernel Methods.” IEEE Transactions on Neural Networks 15 (6): 1517–25.
https://doi.org/10.1109/TNN.2004.837781.
Le, Quoc, Tamás Sarlós, and Alex Smola. 2013.
“Fastfood-Approximating Kernel Expansions in Loglinear Time.” In
Proceedings of the International Conference on Machine Learning.
http://www.jmlr.org/proceedings/papers/v28/le13-supp.pdf.
Minh, Ha Quang, Partha Niyogi, and Yuan Yao. 2006.
“Mercer’s Theorem, Feature Maps, and Smoothing.” In
International Conference on Computational Learning Theory, 154–68. Lecture
Notes in
Computer Science.
Springer.
https://doi.org/10.1007/11776420_14.
Pourkamali-Anaraki, Farhad, and Stephen Becker. 2016a.
“A Randomized Approach to Efficient Kernel Clustering.” August 26, 2016.
http://arxiv.org/abs/1608.07597.
———. 2016b.
“Randomized Clustered Nystrom for Large-Scale Kernel Machines.” December 19, 2016.
http://arxiv.org/abs/1612.06470.
Rahimi, Ali, and Benjamin Recht. 2007.
“Random Features for Large-Scale Kernel Machines.” In
Advances in Neural Information Processing Systems, 1177–84.
Curran Associates, Inc. http://papers.nips.cc/paper/3182-random-features-for-large-scale-kernel-machines.
———. 2009.
“Weighted Sums of Random Kitchen Sinks: Replacing Minimization with Randomization in Learning.” In
Advances in Neural Information Processing Systems, 1313–20.
Curran Associates, Inc. http://papers.nips.cc/paper/3495-weighted-sums-of-random-kitchen-sinks-replacing-minimization-with-randomization-in-learning.
Scardapane, Simone, and Dianhui Wang. 2017.
“Randomness in Neural Networks: An Overview.” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 7 (2).
https://doi.org/10.1002/widm.1200.
Schölkopf, Bernhard, Phil Knirsch, Alex Smola, and Chris Burges. 1998.
“Fast Approximation of Support Vector Kernel Expansions, and an Interpretation of Clustering as Approximation in Feature Spaces.” In
Mustererkennung 1998, edited by Paul Levi, Michael Schanz, Rolf-Jürgen Ahlers, and Franz May, 125–32. Informatik Aktuell.
Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-642-72282-0_12.
Schölkopf, Bernhard, and Alexander J. Smola. 2002. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press.
Schölkopf, Bernhard, Alexander Smola, and Klaus-Robert Müller. 1997.
“Kernel Principal Component Analysis.” In
Artificial Neural Networks — ICANN’97, edited by Wulfram Gerstner, Alain Germond, Martin Hasler, and Jean-Daniel Nicoud, 583–88. Lecture
Notes in
Computer Science.
Springer Berlin Heidelberg.
https://doi.org/10.1007/BFb0020217.
Strobl, Eric V., Kun Zhang, and Shyam Visweswaran. 2017.
“Approximate Kernel-Based Conditional Independence Tests for Fast Non-Parametric Causal Discovery.” February 13, 2017.
http://arxiv.org/abs/1702.03877.
Vedaldi, A., and A. Zisserman. 2012.
“Efficient Additive Kernels via Explicit Feature Maps.” IEEE Transactions on Pattern Analysis and Machine Intelligence 34 (3, 3): 480–92.
https://doi.org/10.1109/TPAMI.2011.153.
Vempati, Sreekanth, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar. 2010.
“Generalized RBF Feature Maps for Efficient Detection.” In
Procedings of the British Machine Vision Conference 2010, 2.1–11.
Aberystwyth:
British Machine Vision Association.
https://doi.org/10.5244/C.24.2.
Williams, Christopher K. I. 2001.
“On a Connection Between Kernel PCA and Metric Multidimensional Scaling.” In
Advances in Neural Information Processing Systems 13, edited by T. K. Leen, T. G. Dietterich, and V. Tresp, 46:675–81.
MIT Press.
https://doi.org/10.1023/A:1012485807823.
Williams, Christopher KI, and Matthias Seeger. 2001.
“Using the Nyström Method to Speed Up Kernel Machines.” In
Advances in Neural Information Processing Systems, 682–88.
http://papers.nips.cc/paper/1866-using-the-nystrom-method-to-speed-up-kernel-machines.
Yang, Jiyan, Vikas Sindhwani, Haim Avron, and Michael Mahoney. 2014.
“Quasi-Monte Carlo Feature Maps for Shift-Invariant Kernels.” December 29, 2014.
http://arxiv.org/abs/1412.8293.
Yang, Tianbao, Yu-Feng Li, Mehrdad Mahdavi, Rong Jin, and Zhi-Hua Zhou. 2012.
“Nyström Method Vs Random Fourier Features: A Theoretical and Empirical Comparison.” In
Advances in Neural Information Processing Systems, 476–84.
http://papers.nips.cc/paper/4588-nystrom-method-vs-random-fourier-features-a-theoretical-and-empirical-comparison.
Yu, Chenhan D., William B. March, and George Biros. 2017.
“An $N \log N$ Parallel Fast Direct Solver for Kernel Matrices.” In.
http://arxiv.org/abs/1701.02324.
Yu, Yaoliang, Hao Cheng, Dale Schuurmans, and Csaba Szepesvári. 2013.
“Characterizing the Representer Theorem.” In
Proceedings of the 30th International Conference on Machine Learning (ICML-13), 570–78.
http://www.jmlr.org/proceedings/papers/v28/yu13.pdf.
Zhang, Jaslyn. 2017.
“Improved Genomic Selection Using Vowpal Wabbit with Random Fourier Features.” https://dukespace.lib.duke.edu/dspace/handle/10161/14308.
Zhang, Qinyi, Sarah Filippi, Arthur Gretton, and Dino Sejdinovic. 2016.
“Large-Scale Kernel Methods for Independence Testing.” June 25, 2016.
http://arxiv.org/abs/1606.07892.