Bagge Carlson, Fredrik. 2018.
“Machine Learning and System Identification for Estimation in Physical Systems.” PhD Thesis TFRT-1122. Thesis/docmono,
Lund University.
http://lup.lub.lu.se/record/ffb8dc85-ce12-4f75-8f2b-0881e492f6c0.
Bellec, Pierre C., Guillaume Lecué, and Alexandre B. Tsybakov. 2017.
“Towards the Study of Least Squares Estimators with Convex Penalty.” January 31, 2017.
http://arxiv.org/abs/1701.09120.
Chartrand, R., and Wotao Yin. 2008.
“Iteratively Reweighted Algorithms for Compressive Sensing.” In
IEEE International Conference on Acoustics, Speech and Signal Processing, 2008. ICASSP 2008, 3869–72.
https://doi.org/10.1109/ICASSP.2008.4518498.
Chatla, Suneel Babu, and Galit Shmueli. 2016.
“Modeling Big Count Data: An IRLS Framework for CMP Regression and GAM.” October 26, 2016.
http://arxiv.org/abs/1610.08244.
Chen, Xiaojun, Dongdong Ge, Zizhuo Wang, and Yinyu Ye. 2012.
“Complexity of Unconstrained L_2-L_p.” Mathematical Programming 143 (1-2): 371–83.
https://doi.org/10.1007/s10107-012-0613-0.
Flammarion, Nicolas, and Francis Bach. 2017.
“Stochastic Composite Least-Squares Regression with Convergence Rate O(1/n).” February 21, 2017.
http://arxiv.org/abs/1702.06429.
Friedman, Jerome H. 2002.
“Stochastic Gradient Boosting.” Computational Statistics & Data Analysis, Nonlinear
Methods and
Data Mining, 38 (4): 367–78.
https://doi.org/10.1016/S0167-9473(01)00065-2.
Friedman, Jerome, Trevor Hastie, Holger Höfling, and Robert Tibshirani. 2007.
“Pathwise Coordinate Optimization.” The Annals of Applied Statistics 1 (2): 302–32.
https://doi.org/10.1214/07-AOAS131.
Friedman, Jerome, Trevor Hastie, and Rob Tibshirani. 2010.
“Regularization Paths for Generalized Linear Models via Coordinate Descent.” Journal of Statistical Software 33 (1): 1–22.
https://doi.org/10.18637/jss.v033.i01.
Gasso, G., A. Rakotomamonjy, and S. Canu. 2009.
“Recovering Sparse Signals With a Certain Family of Nonconvex Penalties and DC Programming.” IEEE Transactions on Signal Processing 57 (12): 4686–98.
https://doi.org/10.1109/TSP.2009.2026004.
Karampatziakis, Nikos, and John Langford. 2010.
“Online Importance Weight Aware Updates.” November 6, 2010.
http://arxiv.org/abs/1011.1576.
Madsen, K, H. B. Nielsen, and O. Tingleff. 2004.
“Methods for Non-Linear Least Squares Problems.” http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf.
Orr, Mark JL. 1996.
“Introduction to Radial Basis Function Networks.” Technical Report, Center for Cognitive Science, University of Edinburgh.
http://twyu2.synology.me/htdocs/class_2008_1/nn/Slides/Introduction%20to%20Radial%20Basis%20Function%20Networks%20(1996).pdf.
Portnoy, Stephen, and Roger Koenker. 1997.
“The Gaussian Hare and the Laplacian Tortoise: Computability of Squared-Error Versus Absolute-Error Estimators.” Statistical Science 12 (4): 279–300.
https://doi.org/10.1214/ss/1030037960.
Rhee, Chang-Han, and Peter W. Glynn. 2015.
“Unbiased Estimation with Square Root Convergence for SDE Models.” Operations Research 63 (5): 1026–43.
https://doi.org/10.1287/opre.2015.1404.
Rosset, Saharon, and Ji Zhu. 2007.
“Piecewise Linear Regularized Solution Paths.” The Annals of Statistics 35 (3): 1012–30.
https://doi.org/10.1214/009053606000001370.
Transtrum, Mark K, Benjamin B Machta, and James P Sethna. 2011.
“The Geometry of Nonlinear Least Squares with Applications to Sloppy Models and Optimization.” Physical Review E 83 (3): 036701.
https://doi.org/10.1103/PhysRevE.83.036701.
Yun, Sangwoon, and Kim-Chuan Toh. 2009.
“A Coordinate Gradient Descent Method for ℓ 1-Regularized Convex Minimization.” Computational Optimization and Applications 48 (2): 273–307.
https://doi.org/10.1007/s10589-009-9251-8.