Abramovich, Felix, Yoav Benjamini, David L. Donoho, and Iain M. Johnstone. 2006.
βAdapting to Unknown Sparsity by Controlling the False Discovery Rate.β The Annals of Statistics 34 (2): 584β653.
Aghasi, Alireza, Nam Nguyen, and Justin Romberg. 2016.
βNet-Trim: A Layer-Wise Convex Pruning of Deep Neural Networks.β arXiv:1611.05162 [Cs, Stat], November.
Aragam, Bryon, Arash A. Amini, and Qing Zhou. 2015.
βLearning Directed Acyclic Graphs with Penalized Neighbourhood Regression.β arXiv:1511.08963 [Cs, Math, Stat], November.
Azadkia, Mona, and Sourav Chatterjee. 2019.
βA Simple Measure of Conditional Dependence.β arXiv:1910.12327 [Cs, Math, Stat], December.
Azizyan, Martin, Akshay Krishnamurthy, and Aarti Singh. 2015.
βExtreme Compressive Sampling for Covariance Estimation.β arXiv:1506.00898 [Cs, Math, Stat], June.
Bach, Francis. 2009.
βModel-Consistent Sparse Estimation Through the Bootstrap.β arXiv:0901.3202 [Cs, Stat].
Bach, Francis, Rodolphe Jenatton, and Julien Mairal. 2011.
Optimization With Sparsity-Inducing Penalties. Foundations and Trends(r) in Machine Learning 1.0. Now Publishers Inc.
Bahmani, Sohail, and Justin Romberg. 2014.
βLifting for Blind Deconvolution in Random Mask Imaging: Identifiability and Convex Relaxation.β arXiv:1501.00046 [Cs, Math, Stat], December.
Banerjee, Arindam, Sheng Chen, Farideh Fazayeli, and Vidyashankar Sivakumar. 2014.
βEstimation with Norm Regularization.β In
Advances in Neural Information Processing Systems 27, edited by Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, 1556β64. Curran Associates, Inc.
Banerjee, Onureena, Laurent El Ghaoui, and Alexandre dβAspremont. 2008.
βModel Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data.β Journal of Machine Learning Research 9 (Mar): 485β516.
Barber, Rina Foygel, and Emmanuel J. Candès. 2015.
βControlling the False Discovery Rate via Knockoffs.β The Annals of Statistics 43 (5): 2055β85.
Baron, Dror, Shriram Sarvotham, and Richard G. Baraniuk. 2010.
βBayesian Compressive Sensing via Belief Propagation.β IEEE Transactions on Signal Processing 58 (1): 269β80.
Barron, Andrew R., Albert Cohen, Wolfgang Dahmen, and Ronald A. DeVore. 2008.
βApproximation and Learning by Greedy Algorithms.β The Annals of Statistics 36 (1): 64β94.
Barron, Andrew R., Cong Huang, Jonathan Q. Li, and Xi Luo. 2008.
βMDL, Penalized Likelihood, and Statistical Risk.β In
Information Theory Workshop, 2008. ITWβ08. IEEE, 247β57. IEEE.
Bayati, M., and A. Montanari. 2012.
βThe LASSO Risk for Gaussian Matrices.β IEEE Transactions on Information Theory 58 (4): 1997β2017.
Bellec, Pierre C., and Alexandre B. Tsybakov. 2016.
βBounds on the Prediction Error of Penalized Least Squares Estimators with Convex Penalty.β arXiv:1609.06675 [Math, Stat], September.
Belloni, Alexandre, Victor Chernozhukov, and Lie Wang. 2011.
βSquare-Root Lasso: Pivotal Recovery of Sparse Signals via Conic Programming.β Biometrika 98 (4): 791β806.
Berk, Richard, Lawrence Brown, Andreas Buja, Kai Zhang, and Linda Zhao. 2013.
βValid Post-Selection Inference.β The Annals of Statistics 41 (2): 802β37.
Bertin, K., E. Le Pennec, and V. Rivoirard. 2011.
βAdaptive Dantzig Density Estimation.β Annales de lβInstitut Henri PoincarΓ©, ProbabilitΓ©s Et Statistiques 47 (1): 43β74.
Bian, Wei, Xiaojun Chen, and Yinyu Ye. 2014.
βComplexity Analysis of Interior Point Algorithms for Non-Lipschitz and Nonconvex Minimization.β Mathematical Programming 149 (1-2): 301β27.
Bien, Jacob, Irina Gaynanova, Johannes Lederer, and Christian L. MΓΌller. 2018.
βNon-Convex Global Minimization and False Discovery Rate Control for the TREX.β Journal of Computational and Graphical Statistics 27 (1): 23β33.
Bloniarz, Adam, Hanzhong Liu, Cun-Hui Zhang, Jasjeet Sekhon, and Bin Yu. 2015.
βLasso Adjustments of Treatment Effect Estimates in Randomized Experiments.β arXiv:1507.03652 [Math, Stat], July.
Bondell, Howard D., Arun Krishna, and Sujit K. Ghosh. 2010.
βJoint Variable Selection for Fixed and Random Effects in Linear Mixed-Effects Models.β Biometrics 66 (4): 1069β77.
Borgs, Christian, Jennifer T. Chayes, Henry Cohn, and Yufei Zhao. 2014.
βAn \(L^p\) Theory of Sparse Graph Convergence I: Limits, Sparse Random Graph Models, and Power Law Distributions.β arXiv:1401.2906 [Math], January.
Bottou, LΓ©on, Frank E. Curtis, and Jorge Nocedal. 2016.
βOptimization Methods for Large-Scale Machine Learning.β arXiv:1606.04838 [Cs, Math, Stat], June.
Breiman, Leo. 1995.
βBetter Subset Regression Using the Nonnegative Garrote.β Technometrics 37 (4): 373β84.
Bruckstein, A. M., Michael Elad, and M. Zibulevsky. 2008.
βOn the Uniqueness of Nonnegative Sparse Solutions to Underdetermined Systems of Equations.β IEEE Transactions on Information Theory 54 (11): 4813β20.
Brunton, Steven L., Joshua L. Proctor, and J. Nathan Kutz. 2016.
βDiscovering Governing Equations from Data by Sparse Identification of Nonlinear Dynamical Systems.β Proceedings of the National Academy of Sciences 113 (15): 3932β37.
Bu, Yunqi, and Johannes Lederer. 2017.
βIntegrating Additional Knowledge Into Estimation of Graphical Models.β arXiv:1704.02739 [Stat], April.
BΓΌhlmann, Peter, and Sara van de Geer. 2011.
βAdditive Models and Many Smooth Univariate Functions.β In
Statistics for High-Dimensional Data, 77β97. Springer Series in Statistics. Springer Berlin Heidelberg.
βββ. 2015.
βHigh-Dimensional Inference in Misspecified Linear Models.β arXiv:1503.06426 [Stat] 9 (1): 1449β73.
Bunea, Florentina, Alexandre B. Tsybakov, and Marten H. Wegkamp. 2007a.
βSparse Density Estimation with β1 Penalties.β In
Learning Theory, edited by Nader H. Bshouty and Claudio Gentile, 530β43. Lecture Notes in Computer Science. Springer Berlin Heidelberg.
Bunea, Florentina, Alexandre Tsybakov, and Marten Wegkamp. 2007b.
βSparsity Oracle Inequalities for the Lasso.β Electronic Journal of Statistics 1: 169β94.
Candès, Emmanuel J., and Mark A. Davenport. 2011.
βHow Well Can We Estimate a Sparse Vector?β arXiv:1104.5246 [Cs, Math, Stat], April.
Candès, Emmanuel J., Yingying Fan, Lucas Janson, and Jinchi Lv. 2016.
βPanning for Gold: Model-Free Knockoffs for High-Dimensional Controlled Variable Selection.β arXiv Preprint arXiv:1610.02351.
Candès, Emmanuel J., and Carlos Fernandez-Granda. 2013.
βSuper-Resolution from Noisy Data.β Journal of Fourier Analysis and Applications 19 (6): 1229β54.
Candès, Emmanuel J., and Y. Plan. 2010.
βMatrix Completion With Noise.β Proceedings of the IEEE 98 (6): 925β36.
Candès, Emmanuel J., Justin K. Romberg, and Terence Tao. 2006.
βStable Signal Recovery from Incomplete and Inaccurate Measurements.β Communications on Pure and Applied Mathematics 59 (8): 1207β23.
Candès, Emmanuel J., Michael B. Wakin, and Stephen P. Boyd. 2008.
βEnhancing Sparsity by Reweighted β 1 Minimization.β Journal of Fourier Analysis and Applications 14 (5-6): 877β905.
Carmi, Avishy Y. 2013.
βCompressive System Identification: Sequential Methods and Entropy Bounds.β Digital Signal Processing 23 (3): 751β70.
βββ. 2014.
βCompressive System Identification.β In
Compressed Sensing & Sparse Filtering, edited by Avishy Y. Carmi, Lyudmila Mihaylova, and Simon J. Godsill, 281β324. Signals and Communication Technology. Springer Berlin Heidelberg.
Cevher, Volkan, Marco F. Duarte, Chinmay Hegde, and Richard Baraniuk. 2009.
βSparse Signal Recovery Using Markov Random Fields.β In
Advances in Neural Information Processing Systems, 257β64. Curran Associates, Inc.
Chartrand, R., and Wotao Yin. 2008.
βIteratively Reweighted Algorithms for Compressive Sensing.β In
IEEE International Conference on Acoustics, Speech and Signal Processing, 2008. ICASSP 2008, 3869β72.
Chatterjee, Sourav. 2020.
βA New Coefficient of Correlation.β arXiv:1909.10140 [Math, Stat], January.
Chen, Minhua, J. Silva, J. Paisley, Chunping Wang, D. Dunson, and L. Carin. 2010.
βCompressive Sensing on Manifolds Using a Nonparametric Mixture of Factor Analyzers: Algorithm and Performance Bounds.β IEEE Transactions on Signal Processing 58 (12): 6140β55.
Chen, Xiaojun. 2012.
βSmoothing Methods for Nonsmooth, Nonconvex Minimization.β Mathematical Programming 134 (1): 71β99.
Chen, Y., and A. O. Hero. 2012.
βRecursive β1,β Group Lasso.β IEEE Transactions on Signal Processing 60 (8): 3978β87.
Chernozhukov, Victor, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney Newey, and James Robins. 2016.
βDouble/Debiased Machine Learning for Treatment and Causal Parameters.β arXiv:1608.00060 [Econ, Stat], July.
Chernozhukov, Victor, Christian Hansen, Yuan Liao, and Yinchu Zhu. 2018.
βInference For Heterogeneous Effects Using Low-Rank Estimations.β arXiv:1812.08089 [Math, Stat], December.
Chernozhukov, Victor, Whitney K. Newey, and Rahul Singh. 2018.
βLearning L2 Continuous Regression Functionals via Regularized Riesz Representers.β arXiv:1809.05224 [Econ, Math, Stat], September.
Chetverikov, Denis, Zhipeng Liao, and Victor Chernozhukov. 2016.
βOn Cross-Validated Lasso.β arXiv:1605.02214 [Math, Stat], May.
Chichignoud, MichaΓ«l, Johannes Lederer, and Martin Wainwright. 2014.
βA Practical Scheme and Fast Algorithm to Tune the Lasso With Optimality Guarantees.β arXiv:1410.0247 [Math, Stat], October.
Dai, Ran, and Rina Foygel Barber. 2016.
βThe Knockoff Filter for FDR Control in Group-Sparse and Multitask Regression.β arXiv Preprint arXiv:1602.03589.
Diaconis, Persi, and David Freedman. 1984.
βAsymptotics of Graphical Projection Pursuit.β The Annals of Statistics 12 (3): 793β815.
Dossal, Charles, Maher Kachour, Jalal M. Fadili, Gabriel PeyrΓ©, and Christophe Chesneau. 2011.
βThe Degrees of Freedom of the Lasso for General Design Matrix.β arXiv:1111.1162 [Cs, Math, Stat], November.
Efron, Bradley, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. 2004.
βLeast Angle Regression.β The Annals of Statistics 32 (2): 407β99.
El Karoui, Noureddine. 2008.
βOperator Norm Consistent Estimation of Large Dimensional Sparse Covariance Matrices.β University of California, Berkeley 36 (6): 2717β56.
Elhamifar, E., and R. Vidal. 2013.
βSparse Subspace Clustering: Algorithm, Theory, and Applications.β IEEE Transactions on Pattern Analysis and Machine Intelligence 35 (11): 2765β81.
Engebretsen, Solveig, and Jon Bohlin. 2019.
βStatistical Predictions with Glmnet.β Clinical Epigenetics 11 (1): 123.
Ewald, Karl, and Ulrike Schneider. 2015.
βConfidence Sets Based on the Lasso Estimator.β arXiv:1507.05315 [Math, Stat], July.
Fan, Jianqing, and Runze Li. 2001.
βVariable Selection via Nonconcave Penalized Likelihood and Its Oracle Properties.β Journal of the American Statistical Association 96 (456): 1348β60.
Fan, Jianqing, and Jinchi Lv. 2010.
βA Selective Overview of Variable Selection in High Dimensional Feature Space.β Statistica Sinica 20 (1): 101β48.
Fan, Rong-En, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. 2008. βLIBLINEAR: A Library for Large Linear Classification.β Journal of Machine Learning Research 9: 1871β74.
Flynn, Cheryl J., Clifford M. Hurvich, and Jeffrey S. Simonoff. 2013.
βEfficiency for Regularization Parameter Selection in Penalized Likelihood Estimation of Misspecified Models.β arXiv:1302.2068 [Stat], February.
Foygel, Rina, and Nathan Srebro. 2011.
βFast-Rate and Optimistic-Rate Error Bounds for L1-Regularized Regression.β arXiv:1108.0373 [Math, Stat], August.
Friedman, Jerome, Trevor Hastie, Holger HΓΆfling, and Robert Tibshirani. 2007.
βPathwise Coordinate Optimization.β The Annals of Applied Statistics 1 (2): 302β32.
Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. 2008.
βSparse Inverse Covariance Estimation with the Graphical Lasso.β Biostatistics 9 (3): 432β41.
Gasso, G., A. Rakotomamonjy, and S. Canu. 2009.
βRecovering Sparse Signals With a Certain Family of Nonconvex Penalties and DC Programming.β IEEE Transactions on Signal Processing 57 (12): 4686β98.
Geer, Sara A. van de. 2008.
βHigh-Dimensional Generalized Linear Models and the Lasso.β The Annals of Statistics 36 (2): 614β45.
Geer, Sara A. van de, Peter BΓΌhlmann, and Shuheng Zhou. 2011.
βThe Adaptive and the Thresholded Lasso for Potentially Misspecified Models (and a Lower Bound for the Lasso).β Electronic Journal of Statistics 5: 688β749.
Geer, Sara van de. 2007.
βThe Deterministic Lasso.ββββ. 2014a.
βWeakly Decomposable Regularization Penalties and Structured Sparsity.β Scandinavian Journal of Statistics 41 (1): 72β86.
βββ. 2014b.
βWorst Possible Sub-Directions in High-Dimensional Models.β In
arXiv:1403.7023 [Math, Stat]. Vol. 131.
βββ. 2014c.
βStatistical Theory for High-Dimensional Models.β arXiv:1409.8557 [Math, Stat], September.
βββ. 2016.
Estimation and Testing Under Sparsity. Vol. 2159. Lecture Notes in Mathematics. Cham: Springer International Publishing.
Geer, Sara van de, Peter BΓΌhlmann, Yaβacov Ritov, and Ruben Dezeure. 2014.
βOn Asymptotically Optimal Confidence Regions and Tests for High-Dimensional Models.β The Annals of Statistics 42 (3): 1166β1202.
Ghadimi, Saeed, and Guanghui Lan. 2013a.
βStochastic First- and Zeroth-Order Methods for Nonconvex Stochastic Programming.β SIAM Journal on Optimization 23 (4): 2341β68.
Giryes, Raja, Guillermo Sapiro, and Alex M. Bronstein. 2014.
βOn the Stability of Deep Networks.β arXiv:1412.5896 [Cs, Math, Stat], December.
Greenhill, Catherine, Mikhail Isaev, Matthew Kwan, and Brendan D. McKay. 2016.
βThe Average Number of Spanning Trees in Sparse Graphs with Given Degrees.β arXiv:1606.01586 [Math], June.
Gu, Jiaying, Fei Fu, and Qing Zhou. 2014.
βAdaptive Penalized Estimation of Directed Acyclic Graphs From Categorical Data.β arXiv:1403.2310 [Stat], March.
Gupta, Pawan, and Marianna Pensky. 2016.
βSolution of Linear Ill-Posed Problems Using Random Dictionaries.β arXiv:1605.07913 [Math, Stat], May.
Hall, Peter, Jiashun Jin, and Hugh Miller. 2014.
βFeature Selection When There Are Many Influential Features.β Bernoulli 20 (3): 1647β71.
Hall, Peter, and Jing-Hao Xue. 2014.
βOn Selecting Interacting Features from High-Dimensional Data.β Computational Statistics & Data Analysis 71 (March): 694β708.
Hallac, David, Jure Leskovec, and Stephen Boyd. 2015.
βNetwork Lasso: Clustering and Optimization in Large Graphs.β arXiv:1507.00280 [Cs, Math, Stat], July.
Hansen, Niels Richard, Patricia Reynaud-Bouret, and Vincent Rivoirard. 2015.
βLasso and Probabilistic Inequalities for Multivariate Point Processes.β Bernoulli 21 (1): 83β143.
Hastie, Trevor J., Tibshirani, Rob, and Martin J. Wainwright. 2015.
Statistical Learning with Sparsity: The Lasso and Generalizations. Boca Raton: Chapman and Hall/CRC.
Hawe, S., M. Kleinsteuber, and K. Diepold. 2013.
βAnalysis Operator Learning and Its Application to Image Reconstruction.β IEEE Transactions on Image Processing 22 (6): 2138β50.
He, Dan, Irina Rish, and Laxmi Parida. 2014.
βTransductive HSIC Lasso.β In
Proceedings of the 2014 SIAM International Conference on Data Mining, edited by Mohammed Zaki, Zoran Obradovic, Pang Ning Tan, Arindam Banerjee, Chandrika Kamath, and Srinivasan Parthasarathy, 154β62. Proceedings. Philadelphia, PA: Society for Industrial and Applied Mathematics.
Hebiri, Mohamed, and Sara A. van de Geer. 2011.
βThe Smooth-Lasso and Other β1+β2-Penalized Methods.β Electronic Journal of Statistics 5: 1184β1226.
Hegde, Chinmay, and Richard G. Baraniuk. 2012.
βSignal Recovery on Incoherent Manifolds.β IEEE Transactions on Information Theory 58 (12): 7204β14.
Hegde, Chinmay, Piotr Indyk, and Ludwig Schmidt. 2015.
βA Nearly-Linear Time Framework for Graph-Structured Sparsity.β In
Proceedings of the 32nd International Conference on Machine Learning (ICML-15), 928β37.
Hesterberg, Tim, Nam Hee Choi, Lukas Meier, and Chris Fraley. 2008.
βLeast Angle and β1 Penalized Regression: A Review.β Statistics Surveys 2: 61β93.
Hirose, Kei, Shohei Tateishi, and Sadanori Konishi. 2011.
βEfficient Algorithm to Select Tuning Parameters in Sparse Regression Modeling with Regularization.β arXiv:1109.2411 [Stat], September.
Hormati, A., O. Roy, Y.M. Lu, and M. Vetterli. 2010.
βDistributed Sampling of Signals Linked by Sparse Filtering: Theory and Applications.β IEEE Transactions on Signal Processing 58 (3): 1095β1109.
Hsieh, Cho-Jui, MΓ‘tyΓ‘s A. Sustik, Inderjit S. Dhillon, and Pradeep D. Ravikumar. 2014.
βQUIC: Quadratic Approximation for Sparse Inverse Covariance Estimation.β Journal of Machine Learning Research 15 (1): 2911β47.
Hu, Tao, Cengiz Pehlevan, and Dmitri B. Chklovskii. 2014.
βA Hebbian/Anti-Hebbian Network for Online Sparse Dictionary Learning Derived from Symmetric Matrix Factorization.β In
2014 48th Asilomar Conference on Signals, Systems and Computers.
Ishwaran, Hemant, and J. Sunil Rao. 2005.
βSpike and Slab Variable Selection: Frequentist and Bayesian Strategies.β The Annals of Statistics 33 (2): 730β73.
JankovΓ‘, Jana, and Sara van de Geer. 2016.
βConfidence Regions for High-Dimensional Generalized Linear Models Under Sparsity.β arXiv:1610.01353 [Math, Stat], October.
Janson, Lucas, William Fithian, and Trevor J. Hastie. 2015.
βEffective Degrees of Freedom: A Flawed Metaphor.β Biometrika 102 (2): 479β85.
Javanmard, Adel, and Andrea Montanari. 2014.
βConfidence Intervals and Hypothesis Testing for High-Dimensional Regression.β Journal of Machine Learning Research 15 (1): 2869β909.
Jung, Alexander. 2013.
βAn RKHS Approach to Estimation with Sparsity Constraints.β In
Advances in Neural Information Processing Systems 29.
KabΓ‘n, Ata. 2014.
βNew Bounds on Compressive Linear Least Squares Regression.β In
Journal of Machine Learning Research, 448β56.
Kato, Kengo. 2009.
βOn the Degrees of Freedom in Shrinkage Estimation.β Journal of Multivariate Analysis 100 (7): 1338β52.
Kim, Yongdai, Sunghoon Kwon, and Hosik Choi. 2012.
βConsistent Model Selection Criteria on High Dimensions.β Journal of Machine Learning Research 13 (Apr): 1037β57.
Koltchinskii, Prof Vladimir. 2011.
Oracle Inequalities in Empirical Risk Minimization and Sparse Recovery Problems. Lecture Notes in Mathematics Γcole dβΓtΓ© de ProbabilitΓ©s de Saint-Flour 2033. Heidelberg: Springer.
Koppel, Alec, Garrett Warnell, Ethan Stump, and Alejandro Ribeiro. 2016.
βParsimonious Online Learning with Kernels via Sparse Projections in Function Space.β arXiv:1612.04111 [Cs, Stat], December.
Kowalski, Matthieu, and Bruno TorrΓ©sani. 2009.
βStructured Sparsity: From Mixed Norms to Structured Shrinkage.β In
SPARSβ09-Signal Processing with Adaptive Sparse Structured Representations.
KrΓ€mer, Nicole, Juliane SchΓ€fer, and Anne-Laure Boulesteix. 2009.
βRegularized Estimation of Large-Scale Gene Association Networks Using Graphical Gaussian Models.β BMC Bioinformatics 10 (1): 384.
Lam, Clifford, and Jianqing Fan. 2009.
βSparsistency and Rates of Convergence in Large Covariance Matrix Estimation.β Annals of Statistics 37 (6B): 4254β78.
Lambert-Lacroix, Sophie, and Laurent Zwald. 2011.
βRobust Regression Through the Huberβs Criterion and Adaptive Lasso Penalty.β Electronic Journal of Statistics 5: 1015β53.
Langford, John, Lihong Li, and Tong Zhang. 2009.
βSparse Online Learning via Truncated Gradient.β In
Advances in Neural Information Processing Systems 21, edited by D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, 905β12. Curran Associates, Inc.
Lederer, Johannes, and Michael Vogt. 2020.
βEstimating the Lassoβs Effective Noise.β arXiv:2004.11554 [Stat], April.
Lee, Jason D., Dennis L. Sun, Yuekai Sun, and Jonathan E. Taylor. 2013.
βExact Post-Selection Inference, with Application to the Lasso.β arXiv:1311.6238 [Math, Stat], November.
Lemhadri, Ismael, Feng Ruan, Louis Abraham, and Robert Tibshirani. 2021.
βLassoNet: A Neural Network with Feature Sparsity.β Journal of Machine Learning Research 22 (127): 1β29.
Li, Wei, and Johannes Lederer. 2019.
βTuning Parameter Calibration for β1-Regularized Logistic Regression.β Journal of Statistical Planning and Inference 202 (September): 80β98.
Lim, NΓ©hΓ©my, and Johannes Lederer. 2016.
βEfficient Feature Selection With Large and High-Dimensional Data.β arXiv:1609.07195 [Stat], September.
Lockhart, Richard, Jonathan Taylor, Ryan J. Tibshirani, and Robert Tibshirani. 2014.
βA Significance Test for the Lasso.β The Annals of Statistics 42 (2): 413β68.
Lu, W., Y. Goldberg, and J. P. Fine. 2012.
βOn the Robustness of the Adaptive Lasso to Model Misspecification.β Biometrika 99 (3): 717β31.
Lundberg, Scott M, and Su-In Lee. 2017.
βA Unified Approach to Interpreting Model Predictions.β In
Advances in Neural Information Processing Systems. Vol. 30. Curran Associates, Inc.
Mahoney, Michael W. 2016.
βLecture Notes on Spectral Graph Methods.β arXiv Preprint arXiv:1608.04845.
Mazumder, Rahul, Jerome H Friedman, and Trevor J. Hastie. 2009.
βSparseNet: Coordinate Descent with Non-Convex Penalties.β Stanford University.
Meier, Lukas, Sara van de Geer, and Peter BΓΌhlmann. 2008.
βThe Group Lasso for Logistic Regression.β Group 70 (Part 1): 53β71.
Meinshausen, Nicolai, and Peter BΓΌhlmann. 2006.
βHigh-Dimensional Graphs and Variable Selection with the Lasso.β The Annals of Statistics 34 (3): 1436β62.
Meinshausen, Nicolai, and Bin Yu. 2009.
βLasso-Type Recovery of Sparse Representations for High-Dimensional Data.β The Annals of Statistics 37 (1): 246β70.
Molchanov, Dmitry, Arsenii Ashukha, and Dmitry Vetrov. 2017.
βVariational Dropout Sparsifies Deep Neural Networks.β In
Proceedings of ICML.
Montanari, Andrea. 2012.
βGraphical Models Concepts in Compressed Sensing.β Compressed Sensing: Theory and Applications, 394β438.
Naik, Prasad A., and Chih-Ling Tsai. 2001.
βSingleβindex Model Selections.β Biometrika 88 (3): 821β32.
Nam, Sangnam, and R. Gribonval. 2012.
βPhysics-Driven Structured Cosparse Modeling for Source Localization.β In
2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 5397β5400.
Needell, D., and J. A. Tropp. 2008.
βCoSaMP: Iterative Signal Recovery from Incomplete and Inaccurate Samples.β arXiv:0803.2392 [Cs, Math], March.
Nesterov, Yu. 2012.
βGradient Methods for Minimizing Composite Functions.β Mathematical Programming 140 (1): 125β61.
Neville, Sarah E., John T. Ormerod, and M. P. Wand. 2014.
βMean Field Variational Bayes for Continuous Sparse Signal Shrinkage: Pitfalls and Remedies.β Electronic Journal of Statistics 8 (1): 1113β51.
Ngiam, Jiquan, Zhenghao Chen, Sonia A. Bhaskar, Pang W. Koh, and Andrew Y. Ng. 2011.
βSparse Filtering.β In
Advances in Neural Information Processing Systems 24, edited by J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger, 1125β33. Curran Associates, Inc.
Nickl, Richard, and Sara van de Geer. 2013.
βConfidence Sets in Sparse Regression.β The Annals of Statistics 41 (6): 2852β76.
Oymak, S., A. Jalali, M. Fazel, and B. Hassibi. 2013.
βNoisy Estimation of Simultaneously Structured Models: Limitations of Convex Relaxation.β In
2013 IEEE 52nd Annual Conference on Decision and Control (CDC), 6019β24.
Peleg, Tomer, Yonina C. Eldar, and Michael Elad. 2010.
βExploiting Statistical Dependencies in Sparse Representations for Signal Recovery.β IEEE Transactions on Signal Processing 60 (5): 2286β2303.
Pouget-Abadie, Jean, and Thibaut Horel. 2015.
βInferring Graphs from Cascades: A Sparse Recovery Framework.β In
Proceedings of The 32nd International Conference on Machine Learning.
Pourahmadi, Mohsen. 2011.
βCovariance Estimation: The GLM and Regularization Perspectives.β Statistical Science 26 (3): 369β87.
Qian, Wei, and Yuhong Yang. 2012.
βModel Selection via Standard Error Adjusted Adaptive Lasso.β Annals of the Institute of Statistical Mathematics 65 (2): 295β318.
Qin, Zhiwei, Katya Scheinberg, and Donald Goldfarb. 2013.
βEfficient Block-Coordinate Descent Algorithms for the Group Lasso.β Mathematical Programming Computation 5 (2): 143β69.
Rahimi, Ali, and Benjamin Recht. 2009.
βWeighted Sums of Random Kitchen Sinks: Replacing Minimization with Randomization in Learning.β In
Advances in Neural Information Processing Systems, 1313β20. Curran Associates, Inc.
Ravikumar, Pradeep, Martin J. Wainwright, Garvesh Raskutti, and Bin Yu. 2011.
βHigh-Dimensional Covariance Estimation by Minimizing β1-Penalized Log-Determinant Divergence.β Electronic Journal of Statistics 5: 935β80.
Ravishankar, S., and Y. Bresler. 2015.
βSparsifying Transform Learning With Efficient Optimal Updates and Convergence Guarantees.β IEEE Transactions on Signal Processing 63 (9): 2389β2404.
Reynaud-Bouret, Patricia, and Sophie Schbath. 2010.
βAdaptive Estimation for Hawkes Processes; Application to Genome Analysis.β The Annals of Statistics 38 (5): 2781β2822.
Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. 2016.
ββWhy Should I Trust You?β: Explaining the Predictions of Any Classifier.β In
Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1135β44. KDD β16. New York, NY, USA: ACM.
Rish, Irina, and Genady Grabarnik. 2014.
βSparse Signal Recovery with Exponential-Family Noise.β In
Compressed Sensing & Sparse Filtering, edited by Avishy Y. Carmi, Lyudmila Mihaylova, and Simon J. Godsill, 77β93. Signals and Communication Technology. Springer Berlin Heidelberg.
Rish, Irina, and Genady Ya Grabarnik. 2015. Sparse Modeling: Theory, Algorithms, and Applications. Chapman & Hall/CRC Machine Learning & Pattern Recognition Series. Boca Raton, FL: CRC Press, Taylor & Francis Group.
RoΔkovΓ‘, Veronika, and Edward I. George. 2018.
βThe Spike-and-Slab LASSO.β Journal of the American Statistical Association 113 (521): 431β44.
Sashank J. Reddi, Suvrit Sra, BarnabΓ‘s PΓ³czΓ³s, and Alex Smola. 1995.
βStochastic Frank-Wolfe Methods for Nonconvex Optimization.βSchelldorfer, JΓΌrg, Peter BΓΌhlmann, and Sara Van De Geer. 2011.
βEstimation for High-Dimensional Linear Mixed-Effects Models Using β1-Penalization.β Scandinavian Journal of Statistics 38 (2): 197β214.
Shen, Xiaotong, and Hsin-Cheng Huang. 2006.
βOptimal Model Assessment, Selection, and Combination.β Journal of the American Statistical Association 101 (474): 554β68.
Shen, Xiaotong, Hsin-Cheng Huang, and Jimmy Ye. 2004.
βAdaptive Model Selection and Assessment for Exponential Family Distributions.β Technometrics 46 (3): 306β17.
Shen, Xiaotong, and Jianming Ye. 2002.
βAdaptive Model Selection.β Journal of the American Statistical Association 97 (457): 210β21.
Simon, Noah, Jerome Friedman, Trevor Hastie, and Rob Tibshirani. 2011.
βRegularization Paths for Coxβs Proportional Hazards Model via Coordinate Descent.β Journal of Statistical Software 39 (5).
Smith, Virginia, Simone Forte, Michael I. Jordan, and Martin Jaggi. 2015.
βL1-Regularized Distributed Optimization: A Communication-Efficient Primal-Dual Framework.β arXiv:1512.04011 [Cs], December.
Soh, Yong Sheng, and Venkat Chandrasekaran. 2017.
βA Matrix Factorization Approach for Learning Semidefinite-Representable Regularizers.β arXiv:1701.01207 [Cs, Math, Stat], January.
Soltani, Mohammadreza, and Chinmay Hegde. 2016.
βDemixing Sparse Signals from Nonlinear Observations.β Statistics 7: 9.
Starck, J. L., Michael Elad, and David L. Donoho. 2005.
βImage Decomposition via the Combination of Sparse Representations and a Variational Approach.β IEEE Transactions on Image Processing 14 (10): 1570β82.
Stine, Robert A. 2004.
βDiscussion of βLeast Angle Regressionβ by Efron Et Al.β The Annals of Statistics 32 (2): 407β99.
Su, Weijie, Malgorzata Bogdan, and Emmanuel J. Candès. 2015.
βFalse Discoveries Occur Early on the Lasso Path.β arXiv:1511.01957 [Cs, Math, Stat], November.
Taddy, Matt. 2013.
βOne-Step Estimator Paths for Concave Regularization.β arXiv:1308.5623 [Stat], August.
Tarr, Garth, Samuel MΓΌller, and Alan H. Welsh. 2018.
βMplot: An R Package for Graphical Model Stability and Variable Selection Procedures.β Journal of Statistical Software 83 (1): 1β28.
Thrampoulidis, Chrtistos, Ehsan Abbasi, and Babak Hassibi. 2015.
βLASSO with Non-Linear Measurements Is Equivalent to One With Linear Measurements.β In
Advances in Neural Information Processing Systems 28, edited by C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, R. Garnett, and R. Garnett, 3402β10. Curran Associates, Inc.
Tibshirani, Robert. 1996.
βRegression Shrinkage and Selection via the Lasso.β Journal of the Royal Statistical Society. Series B (Methodological) 58 (1): 267β88.
βββ. 2011.
βRegression Shrinkage and Selection via the Lasso: A Retrospective.β Journal of the Royal Statistical Society: Series B (Statistical Methodology) 73 (3): 273β82.
Tibshirani, Ryan J. 2014.
βA General Framework for Fast Stagewise Algorithms.β arXiv:1408.5801 [Stat], August.
Trofimov, Ilya, and Alexander Genkin. 2015.
βDistributed Coordinate Descent for L1-Regularized Logistic Regression.β In
Analysis of Images, Social Networks and Texts, edited by Mikhail Yu Khachay, Natalia Konstantinova, Alexander Panchenko, Dmitry I. Ignatov, and Valeri G. Labunets, 243β54. Communications in Computer and Information Science 542. Springer International Publishing.
Tropp, J. A., and S. J. Wright. 2010.
βComputational Methods for Sparse Solution of Linear Inverse Problems.β Proceedings of the IEEE 98 (6): 948β58.
Tschannen, Michael, and Helmut BΓΆlcskei. 2016.
βNoisy Subspace Clustering via Matching Pursuits.β arXiv:1612.03450 [Cs, Math, Stat], December.
Unser, Michael A., and Pouya Tafti. 2014.
An Introduction to Sparse Stochastic Processes. New York: Cambridge University Press.
Unser, M., P. D. Tafti, A. Amini, and H. Kirshner. 2014.
βA Unified Formulation of Gaussian Vs Sparse Stochastic Processes - Part II: Discrete-Domain Theory.β IEEE Transactions on Information Theory 60 (5): 3036β51.
Unser, M., P. D. Tafti, and Q. Sun. 2014.
βA Unified Formulation of Gaussian Vs Sparse Stochastic ProcessesβPart I: Continuous-Domain Theory.β IEEE Transactions on Information Theory 60 (3): 1945β62.
Veitch, Victor, and Daniel M. Roy. 2015.
βThe Class of Random Graphs Arising from Exchangeable Random Measures.β arXiv:1512.03099 [Cs, Math, Stat], December.
Wahba, Grace. 1990. Spline Models for Observational Data. SIAM.
Wang, Hansheng, Guodong Li, and Guohua Jiang. 2007.
βRobust Regression Shrinkage and Consistent Variable Selection Through the LAD-Lasso.β Journal of Business & Economic Statistics 25 (3): 347β55.
Wang, L., M. D. Gordon, and J. Zhu. 2006.
βRegularized Least Absolute Deviations Regression and an Efficient Algorithm for Parameter Tuning.β In
Sixth International Conference on Data Mining (ICDMβ06), 690β700.
Wang, Zhangyang, Shiyu Chang, Qing Ling, Shuai Huang, Xia Hu, Honghui Shi, and Thomas S. Huang. 2016.
βStacked Approximated Regression Machine: A Simple Deep Learning Approach.β In.
Wisdom, Scott, Thomas Powers, James Pitton, and Les Atlas. 2016.
βInterpretable Recurrent Neural Networks Using Sequential Sparse Recovery.β In
Advances in Neural Information Processing Systems 29.
Woodworth, Joseph, and Rick Chartrand. 2015.
βCompressed Sensing Recovery via Nonconvex Shrinkage Penalties.β arXiv:1504.02923 [Cs, Math], April.
Wright, S. J., R. D. Nowak, and M. A. T. Figueiredo. 2009.
βSparse Reconstruction by Separable Approximation.β IEEE Transactions on Signal Processing 57 (7): 2479β93.
Wu, Tong Tong, and Kenneth Lange. 2008.
βCoordinate Descent Algorithms for Lasso Penalized Regression.β The Annals of Applied Statistics 2 (1): 224β44.
Xu, H., C. Caramanis, and S. Mannor. 2010.
βRobust Regression and Lasso.β IEEE Transactions on Information Theory 56 (7): 3561β74.
βββ. 2012.
βSparse Algorithms Are Not Stable: A No-Free-Lunch Theorem.β IEEE Transactions on Pattern Analysis and Machine Intelligence 34 (1): 187β93.
Yaghoobi, M., Sangnam Nam, R. Gribonval, and M.E. Davies. 2012.
βNoise Aware Analysis Operator Learning for Approximately Cosparse Signals.β In
2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 5409β12.
Yang, Wenzhuo, and Huan Xu. 2013.
βA Unified Robust Regression Model for Lasso-Like Algorithms.β In
ICML (3), 585β93.
Yoshida, Ryo, and Mike West. 2010.
βBayesian Learning in Sparse Graphical Factor Models via Variational Mean-Field Annealing.β Journal of Machine Learning Research 11 (May): 1771β98.
Yuan, Ming, and Yi Lin. 2006.
βModel Selection and Estimation in Regression with Grouped Variables.β Journal of the Royal Statistical Society: Series B (Statistical Methodology) 68 (1): 49β67.
Yun, Sangwoon, and Kim-Chuan Toh. 2009.
βA Coordinate Gradient Descent Method for β 1-Regularized Convex Minimization.β Computational Optimization and Applications 48 (2): 273β307.
Zhang, Cun-Hui. 2010.
βNearly Unbiased Variable Selection Under Minimax Concave Penalty.β The Annals of Statistics 38 (2): 894β942.
Zhang, Cun-Hui, and Stephanie S. Zhang. 2014.
βConfidence Intervals for Low Dimensional Parameters in High Dimensional Linear Models.β Journal of the Royal Statistical Society: Series B (Statistical Methodology) 76 (1): 217β42.
Zhang, Yiyun, Runze Li, and Chih-Ling Tsai. 2010.
βRegularization Parameter Selections via Generalized Information Criterion.β Journal of the American Statistical Association 105 (489): 312β23.
Zhao, Peng, and Bin Yu. 2006.
βOn Model Selection Consistency of Lasso.β Journal of Machine Learning Research 7 (Nov): 2541β63.
Zhao, Tuo, Han Liu, and Tong Zhang. 2018.
βPathwise Coordinate Optimization for Sparse Learning: Algorithm and Theory.β The Annals of Statistics 46 (1): 180β218.
Zhou, Tianyi, Dacheng Tao, and Xindong Wu. 2011.
βManifold Elastic Net: A Unified Framework for Sparse Dimension Reduction.β Data Mining and Knowledge Discovery 22 (3): 340β71.
Zou, Hui. 2006.
βThe Adaptive Lasso and Its Oracle Properties.β Journal of the American Statistical Association 101 (476): 1418β29.
Zou, Hui, and Trevor Hastie. 2005.
βRegularization and Variable Selection via the Elastic Net.β Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67 (2): 301β20.
Zou, Hui, Trevor Hastie, and Robert Tibshirani. 2007.
βOn the βDegrees of Freedomβ of the Lasso.β The Annals of Statistics 35 (5): 2173β92.
Zou, Hui, and Runze Li. 2008.
βOne-Step Sparse Estimates in Nonconcave Penalized Likelihood Models.β The Annals of Statistics 36 (4): 1509β33.
No comments yet. Why not leave one?