Altmann, Robert, Patrick Henning, and Daniel Peterseim. 2021.
βNumerical Homogenization Beyond Scale Separation.β Acta Numerica 30 (May): 1β86.
Asher, M. J., B. F. W. Croke, A. J. Jakeman, and L. J. M. Peeters. 2015.
βA Review of Surrogate Models and Their Application to Groundwater Modeling.β Water Resources Research 51 (8): 5957β73.
Cui, Tao, Luk Peeters, Dan Pagendam, Trevor Pickett, Huidong Jin, Russell S. Crosbie, Matthias Raiber, David W. Rassam, and Mat Gilfedder. 2018.
βEmulator-Enabled Approximate Bayesian Computation (ABC) and Uncertainty Analysis for Computationally Expensive Groundwater Models.β Journal of Hydrology 564 (September): 191β207.
Forrester, Alexander I. J., and Andy J. Keane. 2009.
βRecent Advances in Surrogate-Based Optimization.β Progress in Aerospace Sciences 45 (1β3): 50β79.
Gladish, Daniel W., Daniel E. Pagendam, Luk J. M. Peeters, Petra M. Kuhnert, and Jai Vaze. 2018.
βEmulation Engines: Choice and Quantification of Uncertainty for Complex Hydrological Models.β Journal of Agricultural, Biological and Environmental Statistics 23 (1): 39β62.
Goldstein, Evan B., and Giovanni Coco. 2015.
βMachine Learning Components in Deterministic Models: Hybrid Synergy in the Age of Data.β Frontiers in Environmental Science 3 (April).
Guth, Philipp A., Claudia Schillings, and Simon Weissmann. 2020.
βEnsemble Kalman Filter for Neural Network Based One-Shot Inversion.β arXiv.
Higdon, Dave, James Gattiker, Brian Williams, and Maria Rightley. 2008.
βComputer Model Calibration Using High-Dimensional Output.β Journal of the American Statistical Association 103 (482): 570β83.
Hoffimann, JΓΊlio, Maciel Zortea, Breno de Carvalho, and Bianca Zadrozny. 2021.
βGeostatistical Learning: Challenges and Opportunities.β Frontiers in Applied Mathematics and Statistics 7.
Holzschuh, Benjamin, Simona Vegetti, and Nils Thuerey. 2022. βScore Matching via Differentiable Physics,β 7.
Hooten, Mevin B., William B. Leeds, Jerome Fiechter, and Christopher K. Wikle. 2011.
βAssessing First-Order Emulator Inference for Physical Parameters in Nonlinear Mechanistic Models.β Journal of Agricultural, Biological, and Environmental Statistics 16 (4): 475β94.
Jarvenpaa, Marko, Aki Vehtari, and Pekka Marttinen. 2020.
βBatch Simulations and Uncertainty Quantification in Gaussian Process Surrogate Approximate Bayesian Computation.β In
Conference on Uncertainty in Artificial Intelligence, 779β88. PMLR.
Kasim, M. F., D. Watson-Parris, L. Deaconu, S. Oliver, P. Hatfield, D. H. Froula, G. Gregori, et al. 2020.
βUp to Two Billion Times Acceleration of Scientific Simulations with Deep Neural Architecture Search.β arXiv:2001.08055 [Physics, Stat], January.
Kononenko, O., and I. Kononenko. 2018.
βMachine Learning and Finite Element Method for Physical Systems Modeling.β arXiv:1801.07337 [Physics], March.
Merwe, Rudolph van der, Todd K. Leen, Zhengdong Lu, Sergey Frolov, and Antonio M. Baptista. 2007.
βFast Neural Network Surrogates for Very High Dimensional Physics-Based Models in Computational Oceanography.β Neural Networks, Computational Intelligence in Earth and Environmental Sciences, 20 (4): 462β78.
Mo, Shaoxing, Dan Lu, Xiaoqing Shi, Guannan Zhang, Ming Ye, Jianfeng Wu, and Jichun Wu. 2017.
βA Taylor Expansion-Based Adaptive Design Strategy for Global Surrogate Modeling With Applications in Groundwater Modeling.β Water Resources Research 53 (12): 10802β23.
OβHagan, A. 1978.
βCurve Fitting and Optimal Design for Prediction.β Journal of the Royal Statistical Society: Series B (Methodological) 40 (1): 1β24.
βββ. 2006.
βBayesian Analysis of Computer Code Outputs: A Tutorial.β Reliability Engineering & System Safety, The Fourth International Conference on Sensitivity Analysis of Model Output (SAMO 2004), 91 (10): 1290β300.
OβHagan, Anthony. 2013. βPolynomial Chaos: A Tutorial and Critique from a Statisticianβs Perspective,β 20.
Oakley, Jeremy E., and Benjamin D. Youngman. 2017.
βCalibration of Stochastic Computer Simulators Using Likelihood Emulation.β Technometrics 59 (1): 80β92.
Paleyes, Andrei, Mark Pullin, Maren Mahsereci, Neil Lawrence, and Javier Gonzalez. 2019.
βEmulation of Physical Processes with Emukit.β In
Advances In Neural Information Processing Systems, 8.
Pestourie, RaphaΓ«l, Youssef Mroueh, Chris Rackauckas, Payel Das, and Steven G. Johnson. 2022.
βPhysics-Enhanced Deep Surrogates for PDEs.β arXiv.
Plumlee, Matthew. 2017.
βBayesian Calibration of Inexact Computer Models.β Journal of the American Statistical Association 112 (519): 1274β85.
Queipo, Nestor V., Raphael T. Haftka, Wei Shyy, Tushar Goel, Rajkumar Vaidyanathan, and P. Kevin Tucker. 2005.
βSurrogate-Based Analysis and Optimization.β Progress in Aerospace Sciences 41 (1): 1β28.
Razavi, Saman, Bryan A. Tolson, and Donald H. Burn. 2012.
βReview of Surrogate Modeling in Water Resources.β Water Resources Research 48 (7).
Rueden, Laura von, Sebastian Mayer, Rafet Sifa, Christian Bauckhage, and Jochen Garcke. 2020.
βCombining Machine Learning and Simulation to a Hybrid Modelling Approach: Current and Future Directions.β In
Advances in Intelligent Data Analysis XVIII, edited by Michael R. Berthold, Ad Feelders, and Georg Krempl, 12080:548β60. Cham: Springer International Publishing.
Sacks, Jerome, Susannah B. Schiller, and William J. Welch. 1989.
βDesigns for Computer Experiments.β Technometrics 31 (1): 41β47.
Sacks, Jerome, William J. Welch, Toby J. Mitchell, and Henry P. Wynn. 1989.
βDesign and Analysis of Computer Experiments.β Statistical Science 4 (4): 409β23.
Shankar, Varun, Gavin D Portwood, Arvind T Mohan, Peetak P Mitra, Christopher Rackauckas, Lucas A Wilson, David P Schmidt, and Venkatasubramanian Viswanathan. 2020. βLearning Non-Linear Spatio-Temporal Dynamics with Convolutional Neural ODEs.β In Third Workshop on Machine Learning and the Physical Sciences (NeurIPS 2020).
Tait, Daniel J., and Theodoros Damoulas. 2020.
βVariational Autoencoding of PDE Inverse Problems.β arXiv:2006.15641 [Cs, Stat], June.
Teweldebrhan, Aynom T., Thomas V. Schuler, John F. Burkhart, and Morten Hjorth-Jensen. 2020.
βCoupled machine learning and the limits of acceptability approach applied in parameter identification for a distributed hydrological model.β Hydrology and Earth System Sciences 24 (9): 4641β58.
Thiagarajan, Jayaraman J., Bindya Venkatesh, Rushil Anirudh, Peer-Timo Bremer, Jim Gaffney, Gemma Anderson, and Brian Spears. 2020.
βDesigning Accurate Emulators for Scientific Processes Using Calibration-Driven Deep Models.β Nature Communications 11 (1): 5622.
Tompson, Jonathan, Kristofer Schlachter, Pablo Sprechmann, and Ken Perlin. 2017.
βAccelerating Eulerian Fluid Simulation with Convolutional Networks.β In
Proceedings of the 34th International Conference on Machine Learning - Volume 70, 3424β33. ICMLβ17. Sydney, NSW, Australia: JMLR.org.
Vernon, Ian, Michael Goldstein, and Richard Bower. 2014.
βGalaxy Formation: Bayesian History Matching for the Observable Universe.β Statistical Science 29 (1): 81β90.
Watson, James, and Chris Holmes. 2016.
βApproximate Models and Robust Decisions.β Statistical Science 31 (4): 465β89.
White, Jeremy T., Michael N. Fienen, and John E. Doherty. 2016.
βA Python Framework for Environmental Model Uncertainty Analysis.β Environmental Modelling & Software 85 (November): 217β28.
Yu, Xiayang, Tao Cui, J. Sreekanth, Stephane Mangeon, Rebecca Doble, Pei Xin, David Rassam, and Mat Gilfedder. 2020.
βDeep Learning Emulators for Groundwater Contaminant Transport Modelling.β Journal of Hydrology, August, 125351.
Zhu, Yinhao, Nicholas Zabaras, Phaedon-Stelios Koutsourelakis, and Paris Perdikaris. 2019.
βPhysics-Constrained Deep Learning for High-Dimensional Surrogate Modeling and Uncertainty Quantification Without Labeled Data.β Journal of Computational Physics 394 (October): 56β81.
No comments yet. Why not leave one?