Aghasi, Alireza, Nam Nguyen, and Justin Romberg. 2016.
βNet-Trim: A Layer-Wise Convex Pruning of Deep Neural Networks.β arXiv:1611.05162 [Cs, Stat], November.
Blalock, Davis, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. 2020.
βWhat Is the State of Neural Network Pruning?β arXiv:2003.03033 [Cs, Stat], March.
BΓΆlcskei, Helmut, Philipp Grohs, Gitta Kutyniok, and Philipp Petersen. 2019.
βOptimal Approximation with Sparsely Connected Deep Neural Networks.β SIAM Journal on Mathematics of Data Science 1 (1): 8β45.
Borgerding, Mark, and Philip Schniter. 2016.
βOnsager-Corrected Deep Networks for Sparse Linear Inverse Problems.β arXiv:1612.01183 [Cs, Math], December.
Cai, Han, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. 2020.
βOnce-for-All: Train One Network and Specialize It for Efficient Deployment.β In.
Chen, Tianqi, Ian Goodfellow, and Jonathon Shlens. 2015.
βNet2Net: Accelerating Learning via Knowledge Transfer.β arXiv:1511.05641 [Cs], November.
Chen, Wenlin, James T. Wilson, Stephen Tyree, Kilian Q. Weinberger, and Yixin Chen. 2015.
βCompressing Convolutional Neural Networks.β arXiv:1506.04449 [Cs], June.
Cheng, Yu, Duo Wang, Pan Zhou, and Tao Zhang. 2017.
βA Survey of Model Compression and Acceleration for Deep Neural Networks.β arXiv:1710.09282 [Cs], October.
Cutajar, Kurt, Edwin V. Bonilla, Pietro Michiardi, and Maurizio Filippone. 2017.
βRandom Feature Expansions for Deep Gaussian Processes.β In
PMLR.
Daniely, Amit. 2017.
βDepth Separation for Neural Networks.β arXiv:1702.08489 [Cs, Stat], February.
DeVore, Ronald, Boris Hanin, and Guergana Petrova. 2021.
βNeural Network Approximation.β Acta Numerica 30 (May): 327β444.
ElbrΓ€chter, Dennis, Dmytro Perekrestenko, Philipp Grohs, and Helmut BΓΆlcskei. 2021.
βDeep Neural Network Approximation Theory.β IEEE Transactions on Information Theory 67 (5): 2581β2623.
Frankle, Jonathan, and Michael Carbin. 2019.
βThe Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks.β arXiv:1803.03635 [Cs], March.
Garg, Sahil, Irina Rish, Guillermo Cecchi, and Aurelie Lozano. 2017.
βNeurogenesis-Inspired Dictionary Learning: Online Model Adaption in a Changing World.β In
arXiv:1701.06106 [Cs, Stat].
Gelder, Maxwell van, Mitchell Wortsman, and Kiana Ehsani. 2020.
βDeconstructing the Structure of Sparse Neural Networks.β In. arXiv.
Ghosh, Tapabrata. 2017.
βQuickNet: Maximizing Efficiency and Efficacy in Deep Architectures.β arXiv:1701.02291 [Cs, Stat], January.
Globerson, Amir, and Roi Livni. 2016.
βLearning Infinite-Layer Networks: Beyond the Kernel Trick.β arXiv:1606.05316 [Cs], June.
Gray, Scott, Alec Radford, and Diederik P Kingma. n.d. βGPU Kernels for Block-Sparse Weights,β 12.
Gu, Albert, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher RΓ©. 2021.
βCombining Recurrent, Convolutional, and Continuous-Time Models with Linear State Space Layers.β In
Advances in Neural Information Processing Systems, 34:572β85. Curran Associates, Inc.
Ha, David, Andrew Dai, and Quoc V. Le. 2016.
βHyperNetworks.β arXiv:1609.09106 [Cs], September.
Hardt, Moritz, Benjamin Recht, and Yoram Singer. 2015.
βTrain Faster, Generalize Better: Stability of Stochastic Gradient Descent.β arXiv:1509.01240 [Cs, Math, Stat], September.
Hayou, Soufiane, Jean-Francois Ton, Arnaud Doucet, and Yee Whye Teh. 2020.
βPruning Untrained Neural Networks: Principles and Analysis.β arXiv:2002.08797 [Cs, Stat], June.
Hazimeh, Hussein, Natalia Ponomareva, Petros Mol, Zhenyu Tan, and Rahul Mazumder. 2020.
βThe Tree Ensemble Layer: Differentiability Meets Conditional Computation,β February.
He, Yihui, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. 2019.
βAMC: AutoML for Model Compression and Acceleration on Mobile Devices.β arXiv:1802.03494 [Cs], January.
Howard, Andrew G., Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017.
βMobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications.β arXiv:1704.04861 [Cs], April.
Iandola, Forrest N., Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, and Kurt Keutzer. 2016.
βSqueezeNet: AlexNet-Level Accuracy with 50x Fewer Parameters and <0.5MB Model Size.β arXiv:1602.07360 [Cs], February.
LeCun, Yann, John S. Denker, and Sara A. Solla. 1990.
βOptimal Brain Damage.β In
Advances in Neural Information Processing Systems, 598β605.
Lee, Holden, Rong Ge, Tengyu Ma, Andrej Risteski, and Sanjeev Arora. 2017.
βOn the Ability of Neural Nets to Express Distributions.β In
arXiv:1702.07028 [Cs].
Lemhadri, Ismael, Feng Ruan, Louis Abraham, and Robert Tibshirani. 2021.
βLassoNet: A Neural Network with Feature Sparsity.β Journal of Machine Learning Research 22 (127): 1β29.
Liebenwein, Lucas, Cenk Baykal, Brandon Carter, David Gifford, and Daniela Rus. 2021.
βLost in Pruning: The Effects of Pruning Neural Networks Beyond Test Accuracy.β arXiv:2103.03014 [Cs], March.
Lobacheva, Ekaterina, Nadezhda Chirkova, and Dmitry Vetrov. 2017.
βBayesian Sparsification of Recurrent Neural Networks.β In
Workshop on Learning to Generate Natural Language.
Louizos, Christos, Max Welling, and Diederik P. Kingma. 2017.
βLearning Sparse Neural Networks Through \(L_0\) Regularization.β arXiv:1712.01312 [Cs, Stat], December.
Mariet, Zelda Elaine. 2016.
βLearning and enforcing diversity with Determinantal Point Processes.β Thesis, Massachusetts Institute of Technology.
Molchanov, Dmitry, Arsenii Ashukha, and Dmitry Vetrov. 2017.
βVariational Dropout Sparsifies Deep Neural Networks.β In
Proceedings of ICML.
Narang, Sharan, Eric Undersander, and Gregory Diamos. 2017.
βBlock-Sparse Recurrent Neural Networks.β arXiv:1711.02782 [Cs, Stat], November.
Pan, Wei, Hao Dong, and Yike Guo. 2016.
βDropNeuron: Simplifying the Structure of Deep Neural Networks.β arXiv:1606.07326 [Cs, Stat], June.
Renda, Alex, Jonathan Frankle, and Michael Carbin. 2020.
βComparing Rewinding and Fine-Tuning in Neural Network Pruning.β arXiv:2003.02389 [Cs, Stat], March.
Scardapane, Simone, Danilo Comminiello, Amir Hussain, and Aurelio Uncini. 2016.
βGroup Sparse Regularization for Deep Neural Networks.β arXiv:1607.00485 [Cs, Stat], July.
Shi, Lei, Shikun Feng, and ZhifanZhu. 2016.
βFunctional Hashing for Compressing Neural Networks.β arXiv:1605.06560 [Cs], May.
Srinivas, Suraj, and R. Venkatesh Babu. 2016.
βGeneralized Dropout.β arXiv:1611.06791 [Cs], November.
Steeg, Greg ver, and Aram Galstyan. 2015.
βThe Information Sieve.β arXiv:1507.02284 [Cs, Math, Stat], July.
Ullrich, Karen, Edward Meeds, and Max Welling. 2017.
βSoft Weight-Sharing for Neural Network Compression.β arXiv Preprint arXiv:1702.04008.
Urban, Gregor, Krzysztof J. Geras, Samira Ebrahimi Kahou, Ozlem Aslan, Shengjie Wang, Rich Caruana, Abdelrahman Mohamed, Matthai Philipose, and Matt Richardson. 2016.
βDo Deep Convolutional Nets Really Need to Be Deep (Or Even Convolutional)?β arXiv:1603.05691 [Cs, Stat], March.
Venturi, Daniele, and Xiantao Li. 2022.
βThe Mori-Zwanzig Formulation of Deep Learning.β arXiv.
Wang, Yunhe, Chang Xu, Chao Xu, and Dacheng Tao. 2019.
βPacking Convolutional Neural Networks in the Frequency Domain.β IEEE transactions on pattern analysis and machine intelligence 41 (10): 2495β2510.
Wang, Yunhe, Chang Xu, Shan You, Dacheng Tao, and Chao Xu. 2016.
βCNNpack: Packing Convolutional Neural Networks in the Frequency Domain.β In
Advances in Neural Information Processing Systems 29, edited by D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, 253β61. Curran Associates, Inc.
Wang, Zhangyang, Shiyu Chang, Qing Ling, Shuai Huang, Xia Hu, Honghui Shi, and Thomas S. Huang. 2016.
βStacked Approximated Regression Machine: A Simple Deep Learning Approach.β In.
Warden, Pete, and Daniel Situnayake. 2020. TinyML: Machine Learning with TensorFlow Lite on Arduino and Ultra-Low-Power Microcontrollers. OβReilly Media, Incorporated.
Yarotsky, Dmitry, and Anton Zhevnerchuk. 2020.
βThe Phase Diagram of Approximation Rates for Deep Neural Networks.β In
Proceedings of the 34th International Conference on Neural Information Processing Systems, 33:13005β15. NIPSβ20. Red Hook, NY, USA: Curran Associates Inc.
You, Haoran, Chaojian Li, Pengfei Xu, Yonggan Fu, Yue Wang, Xiaohan Chen, Richard G. Baraniuk, Zhangyang Wang, and Yingyan Lin. 2019.
βDrawing Early-Bird Tickets: Toward More Efficient Training of Deep Networks.β In.
No comments yet. Why not leave one?