Andrieu, Christophe, Arnaud Doucet, and Roman Holenstein. 2010.
“Particle Markov Chain Monte Carlo Methods.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 72 (3): 269–342.
https://doi.org/10.1111/j.1467-9868.2009.00736.x.
Archer, Evan, Il Memming Park, Lars Buesing, John Cunningham, and Liam Paninski. 2015.
“Black Box Variational Inference for State Space Models.” November 23, 2015.
http://arxiv.org/abs/1511.07367.
Babtie, Ann C., Paul Kirk, and Michael P. H. Stumpf. 2014.
“Topological Sensitivity Analysis for Systems Biology.” Proceedings of the National Academy of Sciences 111 (52): 18507–12.
https://doi.org/10.1073/pnas.1414026112.
Bamler, Robert, and Stephan Mandt. 2017.
“Structured Black Box Variational Inference for Latent Time Series Models.” July 4, 2017.
http://arxiv.org/abs/1707.01069.
Becker, Philipp, Harit Pandya, Gregor Gebhardt, Cheng Zhao, C. James Taylor, and Gerhard Neumann. 2019.
“Recurrent Kalman Networks: Factorized Inference in High-Dimensional Deep Feature Spaces.” In
International Conference on Machine Learning, 544–52.
http://proceedings.mlr.press/v97/becker19a.html.
Bretó, Carles, Daihai He, Edward L. Ionides, and Aaron A. King. 2009.
“Time Series Analysis via Mechanistic Models.” The Annals of Applied Statistics 3 (1): 319–48.
https://doi.org/10.1214/08-AOAS201.
Brunton, Steven L., Joshua L. Proctor, and J. Nathan Kutz. 2016.
“Discovering Governing Equations from Data by Sparse Identification of Nonlinear Dynamical Systems.” Proceedings of the National Academy of Sciences 113 (15): 3932–37.
https://doi.org/10.1073/pnas.1517384113.
Chung, Junyoung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C Courville, and Yoshua Bengio. 2015.
“A Recurrent Latent Variable Model for Sequential Data.” In
Advances in Neural Information Processing Systems 28, edited by C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, 2980–88.
Curran Associates, Inc. http://papers.nips.cc/paper/5653-a-recurrent-latent-variable-model-for-sequential-data.pdf.
Del Moral, Pierre, Arnaud Doucet, and Ajay Jasra. 2006.
“Sequential Monte Carlo Samplers.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 68 (3, 3): 411–36.
https://doi.org/10.1111/j.1467-9868.2006.00553.x.
———. 2011.
“An Adaptive Sequential Monte Carlo Method for Approximate Bayesian Computation.” Statistics and Computing 22 (5): 1009–20.
https://doi.org/10.1007/s11222-011-9271-y.
Doucet, Arnaud, Nando Freitas, and Neil Gordon. 2001.
Sequential Monte Carlo Methods in Practice.
New York, NY:
Springer New York.
http://public.eblib.com/choice/publicfullrecord.aspx?p=3087052.
Doucet, Arnaud, Pierre E. Jacob, and Sylvain Rubenthaler. 2013.
“Derivative-Free Estimation of the Score Vector and Observed Information Matrix with Application to State-Space Models.” April 21, 2013.
http://arxiv.org/abs/1304.5768.
Drovandi, Christopher C., Anthony N. Pettitt, and Roy A. McCutchan. 2016.
“Exact and Approximate Bayesian Inference for Low Integer-Valued Time Series Models with Intractable Likelihoods.” Bayesian Analysis 11 (2): 325–52.
https://doi.org/10.1214/15-BA950.
Durbin, J., and S. J. Koopman. 2012. Time Series Analysis by State Space Methods. 2nd ed. Oxford Statistical Science Series 38. Oxford: Oxford University Press.
Evensen, G. 2009.
“The Ensemble Kalman Filter for Combined State and Parameter Estimation.” IEEE Control Systems 29 (3): 83–104.
https://doi.org/10.1109/MCS.2009.932223.
Evensen, Geir. 2003.
“The Ensemble Kalman Filter: Theoretical Formulation and Practical Implementation.” Ocean Dynamics 53 (4): 343–67.
https://doi.org/10.1007/s10236-003-0036-9.
———. 2009.
Data Assimilation - The Ensemble Kalman Filter.
Berlin; Heidelberg:
Springer.
http://link.springer.com/book/10.1007.
Fearnhead, Paul, and Hans R. Künsch. 2018.
“Particle Filters and Data Assimilation.” Annual Review of Statistics and Its Application 5 (1): 421–49.
https://doi.org/10.1146/annurev-statistics-031017-100232.
He, Daihai, Edward L. Ionides, and Aaron A. King. 2010.
“Plug-and-Play Inference for Disease Dynamics: Measles in Large and Small Populations as a Case Study.” Journal of The Royal Society Interface 7 (43): 271–83.
https://doi.org/10.1098/rsif.2009.0151.
Heinonen, Markus, and Florence d’Alché-Buc. 2014.
“Learning Nonparametric Differential Equations with Operator-Valued Kernels and Gradient Matching.” November 19, 2014.
http://arxiv.org/abs/1411.5172.
Hürzeler, Markus, and Hans R. Künsch. 2001.
“Approximating and Maximising the Likelihood for a General State-Space Model.” In
Sequential Monte Carlo Methods in Practice, 159–75. Statistics for
Engineering and
Information Science.
Springer, New York, NY.
https://doi.org/10.1007/978-1-4757-3437-9_8.
Ingraham, John, and Debora Marks. 2017.
“Variational Inference for Sparse and Undirected Models.” In
PMLR, 1607–16.
http://proceedings.mlr.press/v70/ingraham17a.html.
Ionides, E. L., C. Bretó, and A. A. King. 2006.
“Inference for Nonlinear Dynamical Systems.” Proceedings of the National Academy of Sciences 103 (49): 18438–43.
https://doi.org/10.1073/pnas.0603181103.
Ionides, Edward L., Anindya Bhadra, Yves Atchadé, and Aaron King. 2011.
“Iterated Filtering.” The Annals of Statistics 39 (3): 1776–1802.
https://doi.org/10.1214/11-AOS886.
Ionides, Edward L., Dao Nguyen, Yves Atchadé, Stilian Stoev, and Aaron A. King. 2015.
“Inference for Dynamic and Latent Variable Models via Iterated, Perturbed Bayes Maps.” Proceedings of the National Academy of Sciences 112 (3): 719–24.
https://doi.org/10.1073/pnas.1410597112.
Kantas, N., A. Doucet, S. S. Singh, and J. M. Maciejowski. 2009.
“An Overview of Sequential Monte Carlo Methods for Parameter Estimation in General State-Space Models.” IFAC Proceedings Volumes, 15th
IFAC Symposium on
System Identification, 42 (10): 774–85.
https://doi.org/10.3182/20090706-3-FR-2004.00129.
Kantas, Nikolas, Arnaud Doucet, Sumeetpal S. Singh, Jan Maciejowski, and Nicolas Chopin. 2015.
“On Particle Methods for Parameter Estimation in State-Space Models.” Statistical Science 30 (3): 328–51.
https://doi.org/10.1214/14-STS511.
Kitagawa, Genshiro. 1998.
“A Self-Organizing State-Space Model.” Journal of the American Statistical Association, 1203–15.
http://www.jstor.org/stable/2669862.
Krishnan, Rahul G., Uri Shalit, and David Sontag. 2015.
“Deep Kalman Filters.” 2015.
https://arxiv.org/abs/1511.05121.
———. 2017.
“Structured Inference Networks for Nonlinear State Space Models.” In
Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, 2101–9.
http://arxiv.org/abs/1609.09869.
Le, Tuan Anh, Maximilian Igl, Tom Jin, Tom Rainforth, and Frank Wood. 2017.
“Auto-Encoding Sequential Monte Carlo.” 2017.
https://arxiv.org/abs/1705.10306.
Lele, S. R., B. Dennis, and F. Lutscher. 2007.
“Data Cloning: Easy Maximum Likelihood Estimation for Complex Ecological Models Using Bayesian Markov Chain Monte Carlo Methods.” Ecology Letters 10 (7): 551.
https://doi.org/10.1111/j.1461-0248.2007.01047.x.
Lele, Subhash R., Khurram Nadeem, and Byron Schmuland. 2010.
“Estimability and Likelihood Inference for Generalized Linear Mixed Models Using Data Cloning.” Journal of the American Statistical Association 105 (492): 1617–25.
https://doi.org/10.1198/jasa.2010.tm09757.
Lindström, Erik, Edward Ionides, Jan Frydendall, and Henrik Madsen. 2012.
“Efficient Iterated Filtering.” In
IFAC-PapersOnLine (System Identification, Volume 16), 45:1785–90. 16th
IFAC Symposium on
System Identification.
IFAC & Elsevier Ltd. https://doi.org/10.3182/20120711-3-BE-2027.00300.
Lindström, Erik, Jonas Ströjby, Mats Brodén, Magnus Wiktorsson, and Jan Holst. 2008.
“Sequential Calibration of Options.” Computational Statistics & Data Analysis 52 (6): 2877–91.
https://doi.org/10.1016/j.csda.2007.08.009.
Liu, Jane, and Mike West. 2001.
“Combined Parameter and State Estimation in Simulation-Based Filtering.” In
Sequential Monte Carlo Methods in Practice, 197–223. Statistics for
Engineering and
Information Science.
Springer, New York, NY.
https://doi.org/10.1007/978-1-4757-3437-9_10.
Ljung, L. 1979.
“Asymptotic Behavior of the Extended Kalman Filter as a Parameter Estimator for Linear Systems.” IEEE Transactions on Automatic Control 24 (1): 36–50.
https://doi.org/10.1109/TAC.1979.1101943.
Ljung, Lennart, Georg Ch Pflug, and Harro Walk. 2012.
Stochastic Approximation and Optimization of Random Systems. Vol. 17.
Birkhäuser.
https://books.google.ch/books?hl=en&lr=&id=9Fr2BwAAQBAJ&oi=fnd&pg=PA2&ots=rPS2wp3kUH&sig=UKiDTNaSjUnznmD9OUtipdRK7nY.
Ljung, Lennart, and Torsten Söderström. 1983. Theory and Practice of Recursive Identification. The MIT Press Series in Signal Processing, Optimization, and Control 4. Cambridge, Mass: MIT Press.
Maddison, Chris J., Dieterich Lawson, George Tucker, Nicolas Heess, Mohammad Norouzi, Andriy Mnih, Arnaud Doucet, and Yee Whye Teh. 2017.
“Filtering Variational Objectives.” 2017.
https://arxiv.org/abs/1705.09279.
Moradkhani, Hamid, Soroosh Sorooshian, Hoshin V. Gupta, and Paul R. Houser. 2005.
“Dual State–Parameter Estimation of Hydrological Models Using Ensemble Kalman Filter.” Advances in Water Resources 28 (2): 135–47.
https://doi.org/10.1016/j.advwatres.2004.09.002.
Naesseth, Christian A., Scott W. Linderman, Rajesh Ranganath, and David M. Blei. 2017.
“Variational Sequential Monte Carlo.” 2017.
https://arxiv.org/abs/1705.11140.
Oliva, Junier B., Barnabas Poczos, and Jeff Schneider. 2017.
“The Statistical Recurrent Unit.” March 1, 2017.
http://arxiv.org/abs/1703.00381.
Sjöberg, Jonas, Qinghua Zhang, Lennart Ljung, Albert Benveniste, Bernard Delyon, Pierre-Yves Glorennec, Håkan Hjalmarsson, and Anatoli Juditsky. 1995.
“Nonlinear Black-Box Modeling in System Identification: A Unified Overview.” Automatica, Trends in
System Identification, 31 (12): 1691–1724.
https://doi.org/10.1016/0005-1098(95)00120-8.
Söderström, T., and P. Stoica, eds. 1988. System Identification. Upper Saddle River, NJ, USA: Prentice-Hall, Inc.
Tallec, Corentin, and Yann Ollivier. 2017.
“Unbiasing Truncated Backpropagation Through Time.” May 23, 2017.
http://arxiv.org/abs/1705.08209.
Tippett, Michael K., Jeffrey L. Anderson, Craig H. Bishop, Thomas M. Hamill, and Jeffrey S. Whitaker. 2003.
“Ensemble Square Root Filters.” Monthly Weather Review 131 (7): 1485–90.
http://iri.columbia.edu/~tippett/pubs/srf_revised_again_submit.pdf.
Werbos, Paul J. 1988.
“Generalization of Backpropagation with Application to a Recurrent Gas Market Model.” Neural Networks 1 (4): 339–56.
https://doi.org/10.1016/0893-6080(88)90007-X.