System identification using particle filters

A.k.a. parameter estimation in data assimilation



Particle filters + system idenfitication.

A placeholder.

State augmentation

The classic; just include the parameter vector in the state vector and give it a “small” magnitude random evolution. (But how small?)

Via MCMC

a.k.a. particle MCMC. See Frei and Künsch (2012). Kantas et al. (2015) and Fearnhead and Künsch (2018) introduce more.

References

Evensen, Geir. 2009. Data Assimilation - The Ensemble Kalman Filter. Berlin; Heidelberg: Springer.
Fearnhead, Paul, and Hans R. Künsch. 2018. Particle Filters and Data Assimilation.” Annual Review of Statistics and Its Application 5 (1): 421–49.
Frei, Marco, and Hans R. Künsch. 2012. Sequential State and Observation Noise Covariance Estimation Using Combined Ensemble Kalman and Particle Filters.” Monthly Weather Review 140 (5): 1476–95.
Kantas, Nikolas, Arnaud Doucet, Sumeetpal S. Singh, Jan Maciejowski, and Nicolas Chopin. 2015. On Particle Methods for Parameter Estimation in State-Space Models.” Statistical Science 30 (3): 328–51.
Künsch, Hans R. 2013. Particle Filters.” Bernoulli 19 (4): 1391–1403.

No comments yet. Why not leave one?

GitHub-flavored Markdown & a sane subset of HTML is supported.