Archer, Evan, Il Memming Park, Lars Buesing, John Cunningham, and Liam Paninski. 2015.
βBlack Box Variational Inference for State Space Models.β arXiv:1511.07367 [Stat], November.
Bannister, R. N. 2017.
βA Review of Operational Methods of Variational and Ensembleβvariational Data Assimilation.β Quarterly Journal of the Royal Meteorological Society 143 (703): 607β33.
Bayer, Justin, and Christian Osendorfer. 2014.
βLearning Stochastic Recurrent Networks.β arXiv:1411.7610 [Cs, Stat], November.
Campbell, Andrew, Yuyang Shi, Tom Rainforth, and Arnaud Doucet. 2021.
βOnline Variational Filtering and Parameter Learning.β In.
Chung, Junyoung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C Courville, and Yoshua Bengio. 2015.
βA Recurrent Latent Variable Model for Sequential Data.β In
Advances in Neural Information Processing Systems 28, edited by C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, 2980β88. Curran Associates, Inc.
Cox, Marco, Thijs van de Laar, and Bert de Vries. 2019.
βA Factor Graph Approach to Automated Design of Bayesian Signal Processing Algorithms.β International Journal of Approximate Reasoning 104 (January): 185β204.
Damianou, Andreas, Michalis K. Titsias, and Neil D. Lawrence. 2011.
βVariational Gaussian Process Dynamical Systems.β In
Advances in Neural Information Processing Systems 24, edited by J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger, 2510β18. Curran Associates, Inc.
Doerr, Andreas, Christian Daniel, Martin Schiegg, Duy Nguyen-Tuong, Stefan Schaal, Marc Toussaint, and Sebastian Trimpe. 2018.
βProbabilistic Recurrent State-Space Models.β arXiv:1801.10395 [Stat], January.
Drovandi, Christopher C., Anthony N. Pettitt, and Roy A. McCutchan. 2016.
βExact and Approximate Bayesian Inference for Low Integer-Valued Time Series Models with Intractable Likelihoods.β Bayesian Analysis 11 (2): 325β52.
Eleftheriadis, Stefanos, Tom Nicholson, Marc Deisenroth, and James Hensman. 2017.
βIdentification of Gaussian Process State Space Models.β In
Advances in Neural Information Processing Systems 30, edited by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, 5309β19. Curran Associates, Inc.
Fabius, Otto, and Joost R. van Amersfoort. 2014.
βVariational Recurrent Auto-Encoders.β In
Proceedings of ICLR.
FΓΆll, Roman, Bernard Haasdonk, Markus Hanselmann, and Holger Ulmer. 2017.
βDeep Recurrent Gaussian Process with Variational Sparse Spectrum Approximation.β arXiv:1711.00799 [Stat], November.
Fortunato, Meire, Charles Blundell, and Oriol Vinyals. 2017.
βBayesian Recurrent Neural Networks.β arXiv:1704.02798 [Cs, Stat], April.
Fraccaro, Marco, SΓΈ ren Kaae SΓΈ nderby, Ulrich Paquet, and Ole Winther. 2016.
βSequential Neural Models with Stochastic Layers.β In
Advances in Neural Information Processing Systems 29, edited by D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, 2199β2207. Curran Associates, Inc.
Freitas, J. F. G. de, Mahesan Niranjan, A. H. Gee, and Arnaud Doucet. 1998. βSequential Monte Carlo Methods for Optimisation of Neural Network Models.β Cambridge University Engineering Department, Cambridge, England, Technical Report TR-328.
Frigola, Roger, Yutian Chen, and Carl Edward Rasmussen. 2014.
βVariational Gaussian Process State-Space Models.β In
Advances in Neural Information Processing Systems 27, edited by Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, 3680β88. Curran Associates, Inc.
Frigola, Roger, Fredrik Lindsten, Thomas B SchΓΆn, and Carl Edward Rasmussen. 2013.
βBayesian Inference and Learning in Gaussian Process State-Space Models with Particle MCMC.β In
Advances in Neural Information Processing Systems 26, edited by C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, 3156β64. Curran Associates, Inc.
Friston, K. J. 2008.
βVariational Filtering.β NeuroImage 41 (3): 747β66.
Gorad, Ajinkya, Zheng Zhao, and Simo SΓ€rkkΓ€. 2020. βParameter Estimation in Non-Linear State-Space Models by Automatic Differentiation of Non-Linear Kalman Filters.β In, 6.
Gu, Shixiang, Zoubin Ghahramani, and Richard E Turner. 2015.
βNeural Adaptive Sequential Monte Carlo.β In
Advances in Neural Information Processing Systems 28, edited by C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, 2629β37. Curran Associates, Inc.
Hoffman, Matt, David M. Blei, Chong Wang, and John Paisley. 2013.
βStochastic Variational Inference.β arXiv:1206.7051 [Cs, Stat] 14 (1).
Hsu, Wei-Ning, Yu Zhang, and James Glass. 2017.
βUnsupervised Learning of Disentangled and Interpretable Representations from Sequential Data.β In
arXiv:1709.07902 [Cs, Eess, Stat].
Karl, Maximilian, Maximilian Soelch, Justin Bayer, and Patrick van der Smagt. 2016.
βDeep Variational Bayes Filters: Unsupervised Learning of State Space Models from Raw Data.β In
Proceedings of ICLR.
Kocijan, JuΕ‘, Agathe Girard, BlaΕΎ Banko, and Roderick Murray-Smith. 2005.
βDynamic Systems Identification with Gaussian Processes.β Mathematical and Computer Modelling of Dynamical Systems 11 (4): 411β24.
Krishnan, Rahul G., Uri Shalit, and David Sontag. 2015.
βDeep Kalman Filters.β arXiv Preprint arXiv:1511.05121.
βββ. 2017.
βStructured Inference Networks for Nonlinear State Space Models.β In
Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, 2101β9.
KulhavΓ½, Rudolf. 1990.
βRecursive Nonlinear Estimation: A Geometric Approach.β Automatica 26 (3): 545β55.
Lai, Jinlin, Justin Domke, and Daniel Sheldon. 2022.
βVariational Marginal Particle Filters.β In
Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, 875β95. PMLR.
Le, Tuan Anh, Maximilian Igl, Tom Jin, Tom Rainforth, and Frank Wood. 2017.
βAuto-Encoding Sequential Monte Carlo.β arXiv Preprint arXiv:1705.10306.
Ljung, Lennart. 1998.
βSystem Identification.β In
Signal Analysis and Prediction, 163β73. Applied and Numerical Harmonic Analysis. BirkhΓ€user, Boston, MA.
Loeliger, Hans-Andrea, Justin Dauwels, Junli Hu, Sascha Korl, Li Ping, and Frank R. Kschischang. 2007.
βThe Factor Graph Approach to Model-Based Signal Processing.β Proceedings of the IEEE 95 (6): 1295β1322.
Louizos, Christos, and Max Welling. 2016.
βStructured and Efficient Variational Deep Learning with Matrix Gaussian Posteriors.β In
arXiv Preprint arXiv:1603.04733, 1708β16.
Maddison, Chris J., Dieterich Lawson, George Tucker, Nicolas Heess, Mohammad Norouzi, Andriy Mnih, Arnaud Doucet, and Yee Whye Teh. 2017.
βFiltering Variational Objectives.β arXiv Preprint arXiv:1705.09279.
Mattos, CΓ©sar Lincoln C., Zhenwen Dai, Andreas Damianou, Guilherme A. Barreto, and Neil D. Lawrence. 2017.
βDeep Recurrent Gaussian Processes for Outlier-Robust System Identification.β Journal of Process Control, DYCOPS-CAB 2016, 60 (December): 82β94.
Mattos, CΓ©sar Lincoln C., Zhenwen Dai, Andreas Damianou, Jeremy Forth, Guilherme A. Barreto, and Neil D. Lawrence. 2016.
βRecurrent Gaussian Processes.β In
Proceedings of ICLR.
Naesseth, Christian A., Scott W. Linderman, Rajesh Ranganath, and David M. Blei. 2017.
βVariational Sequential Monte Carlo.β arXiv Preprint arXiv:1705.11140.
Ranganath, Rajesh, Dustin Tran, Jaan Altosaar, and David Blei. 2016.
βOperator Variational Inference.β In
Advances in Neural Information Processing Systems 29, edited by D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, 496β504. Curran Associates, Inc.
Ranganath, Rajesh, Dustin Tran, and David Blei. 2016.
βHierarchical Variational Models.β In
PMLR, 324β33.
Ryder, Thomas, Andrew Golightly, A. Stephen McGough, and Dennis Prangle. 2018.
βBlack-Box Variational Inference for Stochastic Differential Equations.β arXiv:1802.03335 [Stat], February.
SΓ€rkkΓ€, S., and J. Hartikainen. 2013.
βNon-Linear Noise Adaptive Kalman Filtering via Variational Bayes.β In
2013 IEEE International Workshop on Machine Learning for Signal Processing (MLSP), 1β6.
SΓ€rkkΓ€, Simo, and A. Nummenmaa. 2009.
βRecursive Noise Adaptive Kalman Filtering by Variational Bayesian Approximations.β IEEE Transactions on Automatic Control 54 (3): 596β600.
Schmidt, Jonathan, Nicholas KrΓ€mer, and Philipp Hennig. 2021.
βA Probabilistic State Space Model for Joint Inference from Differential Equations and Data.β arXiv:2103.10153 [Cs, Stat], June.
Titsias, Michalis, and Neil D. Lawrence. 2010.
βBayesian Gaussian Process Latent Variable Model.β In
Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, 844β51.
Turner, Ryan, Marc Deisenroth, and Carl Rasmussen. 2010.
βState-Space Inference and Learning with Gaussian Processes.β In
Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, 868β75.
No comments yet. Why not leave one?