Alliney, S. 1992.
βDigital Filters as Absolute Norm Regularizers.β IEEE Transactions on Signal Processing 40 (6): 1548β62.
Alzraiee, Ayman H., Jeremy T. White, Matthew J. Knowling, Randall J. Hunt, and Michael N. Fienen. 2022.
βA Scalable Model-Independent Iterative Data Assimilation Tool for Sequential and Batch Estimation of High Dimensional Model Parameters and States.β Environmental Modelling & Software 150 (April): 105284.
Arulampalam, M. S., S. Maskell, N. Gordon, and T. Clapp. 2002.
βA Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking.β IEEE Transactions on Signal Processing 50 (2): 174β88.
Battey, Heather, and Alessio Sancetta. 2013.
βConditional Estimation for Dependent Functional Data.β Journal of Multivariate Analysis 120 (September): 1β17.
Batz, Philipp, Andreas Ruttor, and Manfred Opper. 2017.
βApproximate Bayes Learning of Stochastic Differential Equations.β arXiv:1702.05390 [Physics, Stat], February.
Becker, Philipp, Harit Pandya, Gregor Gebhardt, Cheng Zhao, C. James Taylor, and Gerhard Neumann. 2019.
βRecurrent Kalman Networks: Factorized Inference in High-Dimensional Deep Feature Spaces.β In
International Conference on Machine Learning, 544β52.
Bishop, Adrian N., and Pierre Del Moral. 2016.
βOn the Stability of Kalman-Bucy Diffusion Processes.β SIAM Journal on Control and Optimization 55 (6): 4015β47.
Bishop, Adrian N., Pierre Del Moral, and Sahani D. Pathiraja. 2017.
βPerturbations and Projections of Kalman-Bucy Semigroups Motivated by Methods in Data Assimilation.β arXiv:1701.05978 [Math], January.
BretΓ³, Carles, Daihai He, Edward L. Ionides, and Aaron A. King. 2009.
βTime Series Analysis via Mechanistic Models.β The Annals of Applied Statistics 3 (1): 319β48.
Brunton, Steven L., Joshua L. Proctor, and J. Nathan Kutz. 2016.
βDiscovering Governing Equations from Data by Sparse Identification of Nonlinear Dynamical Systems.β Proceedings of the National Academy of Sciences 113 (15): 3932β37.
Campbell, Andrew, Yuyang Shi, Tom Rainforth, and Arnaud Doucet. 2021.
βOnline Variational Filtering and Parameter Learning.β In.
Carmi, Avishy Y. 2013.
βCompressive System Identification: Sequential Methods and Entropy Bounds.β Digital Signal Processing 23 (3): 751β70.
βββ. 2014.
βCompressive System Identification.β In
Compressed Sensing & Sparse Filtering, edited by Avishy Y. Carmi, Lyudmila Mihaylova, and Simon J. Godsill, 281β324. Signals and Communication Technology. Springer Berlin Heidelberg.
Cassidy, Ben, Caroline Rae, and Victor Solo. 2015.
βBrain Activity: Connectivity, Sparsity, and Mutual Information.β IEEE Transactions on Medical Imaging 34 (4): 846β60.
Charles, Adam, Aurele Balavoine, and Christopher Rozell. 2016.
βDynamic Filtering of Time-Varying Sparse Signals via L1 Minimization.β IEEE Transactions on Signal Processing 64 (21): 5644β56.
Chen, Bin, and Yongmiao Hong. 2012.
βTesting for the Markov Property in Time Series.β Econometric Theory 28 (01): 130β78.
Chen, Y., and A. O. Hero. 2012.
βRecursive β1,β Group Lasso.β IEEE Transactions on Signal Processing 60 (8): 3978β87.
Chung, Junyoung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C Courville, and Yoshua Bengio. 2015.
βA Recurrent Latent Variable Model for Sequential Data.β In
Advances in Neural Information Processing Systems 28, edited by C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, 2980β88. Curran Associates, Inc.
Commandeur, Jacques J. F., and Siem Jan Koopman. 2007. An Introduction to State Space Time Series Analysis. 1 edition. Oxford ; New York: Oxford University Press.
Cox, Marco, Thijs van de Laar, and Bert de Vries. 2019.
βA Factor Graph Approach to Automated Design of Bayesian Signal Processing Algorithms.β International Journal of Approximate Reasoning 104 (January): 185β204.
Cressie, Noel, and Hsin-Cheng Huang. 1999.
βClasses of Nonseparable, Spatio-Temporal Stationary Covariance Functions.β Journal of the American Statistical Association 94 (448): 1330β39.
Cressie, Noel, Tao Shi, and Emily L. Kang. 2010.
βFixed Rank Filtering for Spatio-Temporal Data.β Journal of Computational and Graphical Statistics 19 (3): 724β45.
Cressie, Noel, and Christopher K. Wikle. 2011. Statistics for Spatio-Temporal Data. Wiley Series in Probability and Statistics 2.0. John Wiley and Sons.
Deisenroth, Marc Peter, and Shakir Mohamed. 2012.
βExpectation Propagation in Gaussian Process Dynamical Systems.β In
Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 2, 25:2609β17. NIPSβ12. Red Hook, NY, USA: Curran Associates Inc.
Del Moral, P., A. Kurtzmann, and J. Tugaut. 2017.
βOn the Stability and the Uniform Propagation of Chaos of a Class of Extended Ensemble Kalman-Bucy Filters.β SIAM Journal on Control and Optimization 55 (1): 119β55.
βββ. 2012. Time Series Analysis by State Space Methods. 2nd ed. Oxford Statistical Science Series 38. Oxford: Oxford University Press.
Duttweiler, D., and T. Kailath. 1973a.
βRKHS Approach to Detection and Estimation ProblemsβIV: Non-Gaussian Detection.β IEEE Transactions on Information Theory 19 (1): 19β28.
βββ. 1973b.
βRKHS Approach to Detection and Estimation ProblemsβV: Parameter Estimation.β IEEE Transactions on Information Theory 19 (1): 29β37.
Easley, Deanna, and Tyrus Berry. 2020.
βA Higher Order Unscented Transform.β arXiv:2006.13429 [Cs, Math], June.
Eddy, Sean R. 1996.
βHidden Markov Models.β Current Opinion in Structural Biology 6 (3): 361β65.
Eden, U, L Frank, R Barbieri, V Solo, and E Brown. 2004.
βDynamic Analysis of Neural Encoding by Point Process Adaptive Filtering.β Neural Computation 16 (5): 971β98.
Edwards, David, and Smitha Ankinakatte. 2015.
βContext-Specific Graphical Models for Discrete Longitudinal Data.β Statistical Modelling 15 (4): 301β25.
Eleftheriadis, Stefanos, Tom Nicholson, Marc Deisenroth, and James Hensman. 2017.
βIdentification of Gaussian Process State Space Models.β In
Advances in Neural Information Processing Systems 30, edited by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, 5309β19. Curran Associates, Inc.
Fearnhead, Paul, and Hans R. KΓΌnsch. 2018.
βParticle Filters and Data Assimilation.β Annual Review of Statistics and Its Application 5 (1): 421β49.
FΓΆll, Roman, Bernard Haasdonk, Markus Hanselmann, and Holger Ulmer. 2017.
βDeep Recurrent Gaussian Process with Variational Sparse Spectrum Approximation.β arXiv:1711.00799 [Stat], November.
Fraccaro, Marco, SΓΈ ren Kaae SΓΈ nderby, Ulrich Paquet, and Ole Winther. 2016.
βSequential Neural Models with Stochastic Layers.β In
Advances in Neural Information Processing Systems 29, edited by D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, 2199β2207. Curran Associates, Inc.
Fraser, Andrew M. 2008. Hidden Markov Models and Dynamical Systems. Philadelphia, PA: Society for Industrial and Applied Mathematics.
Freitas, J. F. G. de, Mahesan Niranjan, A. H. Gee, and Arnaud Doucet. 1998. βSequential Monte Carlo Methods for Optimisation of Neural Network Models.β Cambridge University Engineering Department, Cambridge, England, Technical Report TR-328.
Freitas, JoΓ£o FG de, Arnaud Doucet, Mahesan Niranjan, and Andrew H. Gee. 1998. βGlobal Optimisation of Neural Network Models via Sequential Sampling.β In Proceedings of the 11th International Conference on Neural Information Processing Systems, 410β16. NIPSβ98. Cambridge, MA, USA: MIT Press.
Friedlander, B., T. Kailath, and L. Ljung. 1975.
βScattering Theory and Linear Least Squares Estimation: Part II: Discrete-Time Problems.β In
1975 IEEE Conference on Decision and Control Including the 14th Symposium on Adaptive Processes, 57β58.
Frigola, Roger, Yutian Chen, and Carl Edward Rasmussen. 2014.
βVariational Gaussian Process State-Space Models.β In
Advances in Neural Information Processing Systems 27, edited by Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, 3680β88. Curran Associates, Inc.
Frigola, Roger, Fredrik Lindsten, Thomas B SchΓΆn, and Carl Edward Rasmussen. 2013.
βBayesian Inference and Learning in Gaussian Process State-Space Models with Particle MCMC.β In
Advances in Neural Information Processing Systems 26, edited by C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, 3156β64. Curran Associates, Inc.
Friston, K. J. 2008.
βVariational Filtering.β NeuroImage 41 (3): 747β66.
Gorad, Ajinkya, Zheng Zhao, and Simo SΓ€rkkΓ€. 2020. βParameter Estimation in Non-Linear State-Space Models by Automatic Differentiation of Non-Linear Kalman Filters.β In, 6.
Gourieroux, Christian, and Joann Jasiak. 2015.
βFiltering, Prediction and Simulation Methods for Noncausal Processes.β Journal of Time Series Analysis, January, n/aβ.
Gu, Albert, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher RΓ©. 2021.
βCombining Recurrent, Convolutional, and Continuous-Time Models with Linear State Space Layers.β In
Advances in Neural Information Processing Systems, 34:572β85. Curran Associates, Inc.
Hamilton, Franz, Tyrus Berry, and Timothy Sauer. 2016.
βKalman-Takens Filtering in the Presence of Dynamical Noise.β arXiv:1611.05414 [Physics, Stat], November.
Hartikainen, J., and S. SΓ€rkkΓ€. 2010.
βKalman Filtering and Smoothing Solutions to Temporal Gaussian Process Regression Models.β In
2010 IEEE International Workshop on Machine Learning for Signal Processing, 379β84. Kittila, Finland: IEEE.
Harvey, A., and S. J. Koopman. 2005.
βStructural Time Series Models.β In
Encyclopedia of Biostatistics. John Wiley & Sons, Ltd.
Harvey, Andrew, and Alessandra Luati. 2014.
βFiltering With Heavy Tails.β Journal of the American Statistical Association 109 (507): 1112β22.
He, Daihai, Edward L. Ionides, and Aaron A. King. 2010.
βPlug-and-Play Inference for Disease Dynamics: Measles in Large and Small Populations as a Case Study.β Journal of The Royal Society Interface 7 (43): 271β83.
Hefny, Ahmed, Carlton Downey, and Geoffrey Gordon. 2015.
βA New View of Predictive State Methods for Dynamical System Learning.β arXiv:1505.05310 [Cs, Stat], May.
Hong, X., R. J. Mitchell, S. Chen, C. J. Harris, K. Li, and G. W. Irwin. 2008.
βModel Selection Approaches for Non-Linear System Identification: A Review.β International Journal of Systems Science 39 (10): 925β46.
Hou, Elizabeth, Earl Lawrence, and Alfred O. Hero. 2016.
βPenalized Ensemble Kalman Filters for High Dimensional Non-Linear Systems.β arXiv:1610.00195 [Physics, Stat], October.
Hsiao, Roger, and Tanja Schultz. 2011. βGeneralized Baum-Welch Algorithm and Its Implication to a New Extended Baum-Welch Algorithm.β In In Proceedings of INTERSPEECH.
Hsu, Daniel, Sham M. Kakade, and Tong Zhang. 2012.
βA Spectral Algorithm for Learning Hidden Markov Models.β Journal of Computer and System Sciences, JCSS Special Issue: Cloud Computing 2011, 78 (5): 1460β80.
Huber, Marco F. 2014.
βRecursive Gaussian Process: On-Line Regression and Learning.β Pattern Recognition Letters 45 (August): 85β91.
Ionides, E. L., C. BretΓ³, and A. A. King. 2006.
βInference for Nonlinear Dynamical Systems.β Proceedings of the National Academy of Sciences 103 (49): 18438β43.
Ionides, Edward L., Anindya Bhadra, Yves AtchadΓ©, and Aaron King. 2011.
βIterated Filtering.β The Annals of Statistics 39 (3): 1776β1802.
Johansen, Adam, Arnaud Doucet, and Manuel Davy. 2006.
βSequential Monte Carlo for Marginal Optimisation Problems.β Scis & Isis 2006: 1866β71.
Julier, S.J., J.K. Uhlmann, and H.F. Durrant-Whyte. 1995.
βA New Approach for Filtering Nonlinear Systems.β In
American Control Conference, Proceedings of the 1995, 3:1628β1632 vol.3.
βββ. 1974.
βA View of Three Decades of Linear Filtering Theory.β IEEE Transactions on Information Theory 20 (2): 146β81.
Kailath, T., and H. Weinert. 1975.
βAn RKHS Approach to Detection and Estimation ProblemsβII: Gaussian Signal Detection.β IEEE Transactions on Information Theory 21 (1): 15β23.
Kalman, R. 1959.
βOn the General Theory of Control Systems.β IRE Transactions on Automatic Control 4 (3): 110β10.
Kalman, R. E. 1960.
βA New Approach to Linear Filtering and Prediction Problems.β Journal of Basic Engineering 82 (1): 35.
Kalouptsidis, Nicholas, Gerasimos Mileounis, Behtash Babadi, and Vahid Tarokh. 2011.
βAdaptive Algorithms for Sparse System Identification.β Signal Processing 91 (8): 1910β19.
Karvonen, Toni, and Simo SΓ€rkkΓ€. 2016.
βApproximate State-Space Gaussian Processes via Spectral Transformation.β In
2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP), 1β6. Vietri sul Mare, Salerno, Italy: IEEE.
Kelly, D. T. B., K. J. H. Law, and A. M. Stuart. 2014.
βWell-Posedness and Accuracy of the Ensemble Kalman Filter in Discrete and Continuous Time.β Nonlinearity 27 (10): 2579.
Kirch, Claudia, Matthew C. Edwards, Alexander Meier, and Renate Meyer. 2019.
βBeyond Whittle: Nonparametric Correction of a Parametric Likelihood with a Focus on Bayesian Time Series Analysis.β Bayesian Analysis 14 (4): 1037β73.
Kitagawa, Genshiro. 1987.
βNon-Gaussian StateβSpace Modeling of Nonstationary Time Series.β Journal of the American Statistical Association 82 (400): 1032β41.
βββ. 1996.
βMonte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models.β Journal of Computational and Graphical Statistics 5 (1): 1β25.
Kitagawa, Genshiro, and Will Gersch. 1996.
Smoothness Priors Analysis of Time Series. Lecture notes in statistics 116. New York, NY: Springer New York : Imprint : Springer.
Kobayashi, Hisashi, Brian L. Mark, and William Turin. 2011. Probability, Random Processes, and Statistical Analysis: Applications to Communications, Signal Processing, Queueing Theory and Mathematical Finance. Cambridge University Press.
Koopman, S. J., and J. Durbin. 2000.
βFast Filtering and Smoothing for Multivariate State Space Models.β Journal of Time Series Analysis 21 (3): 281β96.
Krishnan, Rahul G., Uri Shalit, and David Sontag. 2017.
βStructured Inference Networks for Nonlinear State Space Models.β In
Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, 2101β9.
KulhavΓ½, Rudolf. 1990.
βRecursive Nonlinear Estimation: A Geometric Approach.β Automatica 26 (3): 545β55.
βββ. 1996.
Recursive Nonlinear Estimation. Vol. 216. Lecture Notes in Control and Information Sciences. London: Springer-Verlag.
Kutschireiter, Anna, Simone C Surace, Henning Sprekeler, and Jean-Pascal Pfister. 2015.
βApproximate Nonlinear Filtering with a Recurrent Neural Network.β BMC Neuroscience 16 (Suppl 1): P196.
LΓ‘zaro-Gredilla, Miguel, Joaquin QuiΓ±onero-Candela, Carl Edward Rasmussen, and AnΓbal R. Figueiras-Vidal. 2010.
βSparse Spectrum Gaussian Process Regression.β Journal of Machine Learning Research 11 (Jun): 1865β81.
Le Gland, FranΓ§ois, Valerie Monbet, and Vu-Duc Tran. 2009.
βLarge Sample Asymptotics for the Ensemble Kalman Filter,β 25.
Lei, Jing, Peter Bickel, and Chris Snyder. 2009.
βComparison of Ensemble Kalman Filters Under Non-Gaussianity.β Monthly Weather Review 138 (4): 1293β1306.
Levin, David N. 2017.
βThe Inner Structure of Time-Dependent Signals.β arXiv:1703.08596 [Cs, Math, Stat], March.
Lindgren, Finn, HΓ₯vard Rue, and Johan LindstrΓΆm. 2011.
βAn Explicit Link Between Gaussian Fields and Gaussian Markov Random Fields: The Stochastic Partial Differential Equation Approach.β Journal of the Royal Statistical Society: Series B (Statistical Methodology) 73 (4): 423β98.
Ljung, L., and T. Kailath. 1976.
βBackwards Markovian Models for Second-Order Stochastic Processes (Corresp.).β IEEE Transactions on Information Theory 22 (4): 488β91.
Ljung, L., T. Kailath, and B. Friedlander. 1975.
βScattering Theory and Linear Least Squares Estimation: Part I: Continuous-Time Problems.β In
1975 IEEE Conference on Decision and Control Including the 14th Symposium on Adaptive Processes, 55β56.
Loeliger, Hans-Andrea, Justin Dauwels, Junli Hu, Sascha Korl, Li Ping, and Frank R. Kschischang. 2007.
βThe Factor Graph Approach to Model-Based Signal Processing.β Proceedings of the IEEE 95 (6): 1295β1322.
Manton, J. H., V. Krishnamurthy, and H. V. Poor. 1998.
βJames-Stein State Filtering Algorithms.β IEEE Transactions on Signal Processing 46 (9): 2431β47.
Mattos, CΓ©sar Lincoln C., Zhenwen Dai, Andreas Damianou, Guilherme A. Barreto, and Neil D. Lawrence. 2017.
βDeep Recurrent Gaussian Processes for Outlier-Robust System Identification.β Journal of Process Control, DYCOPS-CAB 2016, 60 (December): 82β94.
Mattos, CΓ©sar Lincoln C., Zhenwen Dai, Andreas Damianou, Jeremy Forth, Guilherme A. Barreto, and Neil D. Lawrence. 2016.
βRecurrent Gaussian Processes.β In
Proceedings of ICLR.
Meyer, Renate, Matthew C. Edwards, Patricio Maturana-Russel, and Nelson Christensen. 2020.
βComputational Techniques for Parameter Estimation of Gravitational Wave Signals.β WIREs Computational Statistics n/a (n/a): e1532.
Miller, David L., Richard Glennie, and Andrew E. Seaton. 2020.
βUnderstanding the Stochastic Partial Differential Equation Approach to Smoothing.β Journal of Agricultural, Biological and Environmental Statistics 25 (1): 1β16.
Nickisch, Hannes, Arno Solin, and Alexander Grigorevskiy. 2018.
βState Space Gaussian Processes with Non-Gaussian Likelihood.β In
International Conference on Machine Learning, 3789β98.
Olfati-Saber, R. 2005.
βDistributed Kalman Filter with Embedded Consensus Filters.β In
44th IEEE Conference on Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC β05, 8179β84. Seville, Spain: IEEE.
Ollivier, Yann. 2017.
βOnline Natural Gradient as a Kalman Filter.β arXiv:1703.00209 [Math, Stat], March.
Papadopoulos, Alexandre, FranΓ§ois Pachet, Pierre Roy, and Jason Sakellariou. 2015.
βExact Sampling for Regular and Markov Constraints with Belief Propagation.β In
Principles and Practice of Constraint Programming, 341β50. Lecture Notes in Computer Science. Switzerland: Springer, Cham.
Perry, T.S. 2010.
βAndrew Viterbiβs Fabulous Formula [Medal of Honor].β IEEE Spectrum 47 (5): 47β50.
Picci, G. 1991.
βStochastic Realization Theory.β In
Mathematical System Theory: The Influence of R. E. Kalman, edited by Athanasios C. Antoulas, 213β29. Berlin, Heidelberg: Springer.
Pugachev, V. S., and I. N. SinitοΈ sοΈ‘yn. 2001. Stochastic systems: theory and applications. River Edge, NJ: World Scientific.
QuiΓ±onero-Candela, Joaquin, and Carl Edward Rasmussen. 2005.
βA Unifying View of Sparse Approximate Gaussian Process Regression.β Journal of Machine Learning Research 6 (Dec): 1939β59.
Rabiner, L., and B.H. Juang. 1986.
βAn Introduction to Hidden Markov Models.β IEEE ASSP Magazine 3 (1): 4β16.
Raol, J. R., and N. K. Sinha. 1987.
βOn Pugachevβs Filtering Theory for Stochastic Nonlinear Systems.β In
Stochastic Control, edited by N. K. Sinha and L. A. Telksnys, 183β88. IFAC Symposia Series. Oxford: Pergamon.
Reece, S., and S. Roberts. 2010.
βAn Introduction to Gaussian Processes for the Kalman Filter Expert.β In
2010 13th International Conference on Information Fusion, 1β9.
Revach, Guy, Nir Shlezinger, Ruud J. G. van Sloun, and Yonina C. Eldar. 2021.
βKalmannet: Data-Driven Kalman Filtering.β In
ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 3905β9.
Robertson, Andrew N. 2011.
βA Bayesian Approach to Drum Tracking.β In.
Robertson, Andrew, and Mark Plumbley. 2007.
βB-Keeper: A Beat-Tracker for Live Performance.β In
Proceedings of the 7th International Conference on New Interfaces for Musical Expression, 234β37. NIME β07. New York, NY, USA: ACM.
Robertson, Andrew, Adam M. Stark, and Mark D. Plumbley. 2011.
βReal-Time Visual Beat Tracking Using a Comb Filter Matrix.β In
Proceedings of the International Computer Music Conference 2011.
Robertson, Andrew, Adam Stark, and Matthew EP Davies. 2013.
βPercussive Beat Tracking Using Real-Time Median Filtering.β In
Proceedings of European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases.
Rodriguez, Alejandro, and Esther Ruiz. 2009.
βBootstrap Prediction Intervals in StateβSpace Models.β Journal of Time Series Analysis 30 (2): 167β78.
Roth, Michael, Gustaf Hendeby, Carsten Fritsche, and Fredrik Gustafsson. 2017.
βThe Ensemble Kalman Filter: A Signal Processing Perspective.β EURASIP Journal on Advances in Signal Processing 2017 (1): 56.
Rudenko, E. A. 2013.
βOptimal Structure of Continuous Nonlinear Reduced-Order Pugachev Filter.β Journal of Computer and Systems Sciences International 52 (6): 866β92.
SΓ€rkkΓ€, S., and J. Hartikainen. 2013.
βNon-Linear Noise Adaptive Kalman Filtering via Variational Bayes.β In
2013 IEEE International Workshop on Machine Learning for Signal Processing (MLSP), 1β6.
SΓ€rkkΓ€, Simo. 2007.
βOn Unscented Kalman Filtering for State Estimation of Continuous-Time Nonlinear Systems.β IEEE Transactions on Automatic Control 52 (9): 1631β41.
βββ. 2013.
Bayesian Filtering and Smoothing. Institute of Mathematical Statistics Textbooks 3. Cambridge, U.K. ; New York: Cambridge University Press.
SΓ€rkkΓ€, Simo, and Jouni Hartikainen. 2012.
βInfinite-Dimensional Kalman Filtering Approach to Spatio-Temporal Gaussian Process Regression.β In
Artificial Intelligence and Statistics.
SΓ€rkkΓ€, Simo, and A. Nummenmaa. 2009.
βRecursive Noise Adaptive Kalman Filtering by Variational Bayesian Approximations.β IEEE Transactions on Automatic Control 54 (3): 596β600.
Schein, Aaron, Hanna Wallach, and Mingyuan Zhou. 2016.
βPoisson-Gamma Dynamical Systems.β In
Advances In Neural Information Processing Systems, 5006β14.
Schmidt, Jonathan, Nicholas KrΓ€mer, and Philipp Hennig. 2021.
βA Probabilistic State Space Model for Joint Inference from Differential Equations and Data.β arXiv:2103.10153 [Cs, Stat], June.
Segall, A., M. Davis, and T. Kailath. 1975.
βNonlinear Filtering with Counting Observations.β IEEE Transactions on Information Theory 21 (2): 143β49.
Ε indelΓ‘Ε, Jan, Igor Vajda, and Miroslav KΓ‘rnα»³. 2008.
βStochastic Control Optimal in the Kullback Sense.β Kybernetika 44 (1): 53β60.
Sorenson, H.W. 1970.
βLeast-Squares Estimation: From Gauss to Kalman.β IEEE Spectrum 7 (7): 63β68.
StΓ€dler, Nicolas, and Sach Mukherjee. 2013.
βPenalized Estimation in High-Dimensional Hidden Markov Models with State-Specific Graphical Models.β The Annals of Applied Statistics 7 (4): 2157β79.
Surace, Simone Carlo, and Jean-Pascal Pfister. 2016. βOnline Maximum Likelihood Estimation of the Parameters of Partially Observed Diffusion Processes.β In.
Tavakoli, Shahin, and Victor M. Panaretos. 2016.
βDetecting and Localizing Differences in Functional Time Series Dynamics: A Case Study in Molecular Biophysics.β Journal of the American Statistical Association, March, 1β31.
Thrun, Sebastian, and John Langford. 1998.
βMonte Carlo Hidden Markov Models.β DTIC Document.
Thrun, Sebastian, John Langford, and Dieter Fox. 1999.
βMonte Carlo Hidden Markov Models: Learning Non-Parametric Models of Partially Observable Stochastic Processes.β In
Proceedings of the International Conference on Machine Learning. Bled, Slovenia.
Turner, Ryan, Marc Deisenroth, and Carl Rasmussen. 2010.
βState-Space Inference and Learning with Gaussian Processes.β In
Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, 868β75.
Wikle, Christopher K., and L. Mark Berliner. 2007.
βA Bayesian Tutorial for Data Assimilation.β Physica D: Nonlinear Phenomena, Data Assimilation, 230 (1): 1β16.
Wikle, Christopher K., L. Mark Berliner, and Noel Cressie. 1998.
βHierarchical Bayesian Space-Time Models.β Environmental and Ecological Statistics 5 (2): 117β54.
Zoeter, Onno. 2007.
βBayesian Generalized Linear Models in a Terabyte World.β In
2007 5th International Symposium on Image and Signal Processing and Analysis, 435β40. Istanbul, Turkey: IEEE.
No comments yet. Why not leave one?