Alquier, Pierre. 2020.
βApproximate Bayesian Inference.β Entropy 22 (11): 1272.
Baydin, AtΔ±lΔ±m GΓΌneΕ, Lei Shao, Wahid Bhimji, Lukas Heinrich, Lawrence Meadows, Jialin Liu, Andreas Munk, et al. 2019.
βEtalumis: Bringing Probabilistic Programming to Scientific Simulators at Scale.β In
arXiv:1907.03382 [Cs, Stat].
Beaumont, Mark A, Wenyang Zhang, and David J Balding. 2002.
βApproximate Bayesian Computation in Population Genetics.β Genetics 162 (4): 2025β35.
Blum, Michael G. B., and Olivier FranΓ§ois. 2010.
βNon-Linear Regression Models for Approximate Bayesian Computation.β Statistics and Computing 20 (1): 63β73.
Corenflos, Adrien, James Thornton, George Deligiannidis, and Arnaud Doucet. 2021.
βDifferentiable Particle Filtering via Entropy-Regularized Optimal Transport.β arXiv:2102.07850 [Cs, Stat], June.
Cranmer, Kyle, Johann Brehmer, and Gilles Louppe. 2020.
βThe Frontier of Simulation-Based Inference.β Proceedings of the National Academy of Sciences, May.
Diggle, Peter J., and Richard J. Gratton. 1984.
βMonte Carlo Methods of Inference for Implicit Statistical Models.β Journal of the Royal Statistical Society: Series B (Methodological) 46 (2): 193β212.
Drovandi, Christopher C., Clara Grazian, Kerrie Mengersen, and Christian Robert. 2018.
βApproximating the Likelihood in Approximate Bayesian Computation.β arXiv:1803.06645 [Stat], March.
Drovandi, Christopher, and David T. Frazier. 2021.
βA Comparison of Likelihood-Free Methods With and Without Summary Statistics.β arXiv:2103.02407 [Stat], March.
Durkan, Conor, George Papamakarios, and Iain Murray. 2018.
βSequential Neural Methods for Likelihood-Free Inference,β 9.
Fan, Yanan, David J. Nott, and Scott A. Sisson. 2013.
βApproximate Bayesian Computation via Regression Density Estimation.β Stat 2 (1): 34β48.
Forneron, Jean-Jacques, and Serena Ng. 2015.
βThe ABC of Simulation Estimation with Auxiliary Statistics.β arXiv:1501.01265 [Stat], January.
Frazier, David T., and Christopher Drovandi. 2021.
βRobust Approximate Bayesian Inference With Synthetic Likelihood.β Journal of Computational and Graphical Statistics 0 (0): 1β19.
Frazier, David T., David J. Nott, Christopher Drovandi, and Robert Kohn. 2021.
βBayesian Inference Using Synthetic Likelihood: Asymptotics and Adjustments.β arXiv:1902.04827 [Stat], March.
Gelman, Andrew, Aki Vehtari, Daniel Simpson, Charles C. Margossian, Bob Carpenter, Yuling Yao, Lauren Kennedy, Jonah Gabry, Paul-Christian BΓΌrkner, and Martin ModrΓ‘k. 2020.
βBayesian Workflow.β arXiv:2011.01808 [Stat], November.
Gourieroux, Christian, and Alain Monfort. 1993.
βSimulation-Based Inference: A Survey with Special Reference to Panel Data Models.β Journal of Econometrics 59 (1β2): 5β33.
Hermans, Joeri, Arnaud Delaunoy, FranΓ§ois Rozet, Antoine Wehenkel, Volodimir Begy, and Gilles Louppe. 2023.
βA Crisis In Simulation-Based Inference? Beware, Your Posterior Approximations Can Be Unfaithful.β Transactions on Machine Learning Research, January.
Izbicki, Rafael, Ann B. Lee, and Taylor Pospisil. 2019.
βABCβCDE: Toward Approximate Bayesian Computation With Complex High-Dimensional Data and Limited Simulations.β Journal of Computational and Graphical Statistics 28 (3): 481β92.
Le, Tuan Anh, AtΔ±lΔ±m GΓΌneΕ Baydin, and Frank Wood. 2017.
βInference Compilation and Universal Probabilistic Programming.β In
Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS), 54:1338β48. Proceedings of Machine Learning Research. Fort Lauderdale, FL, USA: PMLR.
Lei, Jing, and Peter Bickel. 2009. βEnsemble Filtering for High Dimensional Nonlinear State Space Models.β University of California, Berkeley, Rep 779: 23.
Lueckmann, Jan-Matthis, Giacomo Bassetto, Theofanis Karaletsos, and Jakob H. Macke. 2019.
βLikelihood-Free Inference with Emulator Networks.β In
Symposium on Advances in Approximate Bayesian Inference, 32β53.
Meeds, Edward, and Max Welling. 2014.
βGPS-ABC: Gaussian Process Surrogate Approximate Bayesian Computation.β In
Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence, 593β602. UAIβ14. Arlington, Virginia, USA: AUAI Press.
Mohamed, Shakir, and Balaji Lakshminarayanan. 2016.
βLearning in Implicit Generative Models,β November.
Nott, David J., Lucy Marshall, and Tran Minh Ngoc. 2012.
βThe Ensemble Kalman Filter Is an ABC Algorithm.β Statistics and Computing 22 (6): 1273β76.
Ong, Victor M. -H., David J. Nott, Minh-Ngoc Tran, Scott A. Sisson, and Christopher C. Drovandi. 2018a.
βLikelihood-Free Inference in High Dimensions with Synthetic Likelihood.β Computational Statistics & Data Analysis 128 (December): 271β91.
Ong, Victor M.-H., David J. Nott, Minh-Ngoc Tran, Scott A. Sisson, and Christopher C. Drovandi. 2018b.
βVariational Bayes with Synthetic Likelihood.β Statistics and Computing 28 (4): 971β88.
Papamakarios, George, and Iain Murray. 2016.
βFast Ξ΅-Free Inference of Simulation Models with Bayesian Conditional Density Estimation.β In
Advances in Neural Information Processing Systems 29, edited by D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, 1028β36. Curran Associates, Inc.
Park, Mijung, Wittawat Jitkrittum, and Dino Sejdinovic. 2015.
βK2-ABC: Approximate Bayesian Computation with Kernel Embeddings.β arXiv.
Schad, Daniel J., Michael Betancourt, and Shravan Vasishth. 2021.
βToward a Principled Bayesian Workflow in Cognitive Science.β Psychological Methods 26 (1): 103β26.
Schmon, Sebastian M., Patrick W. Cannon, and Jeremias Knoblauch. 2021.
βGeneralized Posteriors in Approximate Bayesian Computation.β arXiv:2011.08644 [Stat], February.
Sisson, S. A., Y. Fan, and Mark M. Tanaka. 2007.
βSequential Monte Carlo Without Likelihoods.β Proceedings of the National Academy of Sciences 104 (6): 1760β65.
Sisson, Scott A., Yanan Fan, and Mark Beaumont. 2018.
Handbook of Approximate Bayesian Computation. CRC Press.
Stoye, Markus, Johann Brehmer, Gilles Louppe, Juan Pavez, and Kyle Cranmer. 2018.
βLikelihood-Free Inference with an Improved Cross-Entropy Estimator.β arXiv:1808.00973 [Hep-Ph, Physics:physics, Stat], August.
Talts, Sean, Michael Betancourt, Daniel Simpson, Aki Vehtari, and Andrew Gelman. 2020.
βValidating Bayesian Inference Algorithms with Simulation-Based Calibration.β arXiv:1804.06788 [Stat], October.
Tran, Dustin, Rajesh Ranganath, and David Blei. 2017.
βHierarchical Implicit Models and Likelihood-Free Variational Inference.β In
Advances in Neural Information Processing Systems 30, edited by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, 5523β33. Curran Associates, Inc.
Tran, Minh-Ngoc, David J. Nott, and Robert Kohn. 2017.
βVariational Bayes With Intractable Likelihood.β Journal of Computational and Graphical Statistics 26 (4): 873β82.
No comments yet. Why not leave one?