Generalising multivariate Gaussians to anything which has a density function of the form \[ f(x)\propto g((x-\mu )'\Sigma ^{-1}(x-\mu ))\] where \(\mu\) is the mean vector, \(\Sigma\) is a positive definite matrix, and \(g:\mathbb{R}^+\to\mathbb{R}^+\). In fact, we do not need the density function to exist; it’s ok if \(\Sigma\) is positive semi-definite or to allow \(g\) to be a generalised function. Baby steps! If the mean of such an \(X\sim f\) RV exists, it is \(\mu\), and \(\Sigma\) is proportional to the covariance matrix of \(X\) if such a covariance matrix exists.
I assume they did not invent this idea, but Davison and Ortiz (2019) point out that if you have a least-squares-compatible model, usually it can generalise to any elliptical density, which includes many M-estimator-style robust losses.
Recommended reading
OG paper introduction Cambanis, Huang, and Simons (1981) is basically a textbook on the bits that are important to me at least, and it is not a bad textbook at that. K.-T. Fang, Kotz, and Ng (2017) is an actual textbook.
No comments yet. Why not leave one?