Brunton, Steven L., Bingni W. Brunton, Joshua L. Proctor, and J. Nathan Kutz. 2016.
“Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control.” PLOS ONE 11 (2): e0150171.
Brunton, Steven L., Marko Budišić, Eurika Kaiser, and J. Nathan Kutz. 2022.
“Modern Koopman Theory for Dynamical Systems.” SIAM Review 64 (2): 229–340.
Brunton, Steven L., and Jose Nathan Kutz. 2019.
Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge: Cambridge University Press.
Brunton, Steven L., Joshua L. Proctor, and J. Nathan Kutz. 2016.
“Discovering Governing Equations from Data by Sparse Identification of Nonlinear Dynamical Systems.” Proceedings of the National Academy of Sciences 113 (15): 3932–37.
Budišić, Marko, Ryan Mohr, and Igor Mezić. 2012.
“Applied Koopmanism.” Chaos: An Interdisciplinary Journal of Nonlinear Science 22 (4): 047510.
Cvitanović, P., R. Artuso, R. Mainieri, G. Tanner, and G. Vattay. 2016.
“Koopman Modes.” In
Chaos: Classical and Quantum. Copenhagen: Niels Bohr Inst.
Ishikawa, Isao, Keisuke Fujii, Masahiro Ikeda, Yuka Hashimoto, and Yoshinobu Kawahara. 2018.
“Metric on Nonlinear Dynamical Systems with Perron-Frobenius Operators.” arXiv:1805.12324 [Cs, Math, Stat], October.
Klus, Stefan, Péter Koltai, and Christof Schütte. 2016.
“On the Numerical Approximation of the Perron-Frobenius and Koopman Operator.” Journal of Computational Dynamics 3 (1): 51.
Klus, Stefan, Feliks Nüske, Sebastian Peitz, Jan-Hendrik Niemann, Cecilia Clementi, and Christof Schütte. 2020.
“Data-Driven Approximation of the Koopman Generator: Model Reduction, System Identification, and Control.” Physica D: Nonlinear Phenomena 406 (May): 132416.
Klus, Stefan, Ingmar Schuster, and Krikamol Muandet. 2020.
“Eigendecompositions of Transfer Operators in Reproducing Kernel Hilbert Spaces.” Journal of Nonlinear Science 30 (1): 283–315.
Koopman, B. O. 1931.
“Hamiltonian Systems and Transformation in Hilbert Space.” Proceedings of the National Academy of Sciences 17 (5): 315–18.
Kutz, J. Nathan, Steven L. Brunton, Bingni W. Brunton, and Joshua L. Proctor. 2016.
Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems. Philadelphia, PA: Society for Industrial and Applied Mathematics.
Li, Qianxiao, Felix Dietrich, Erik M. Bollt, and Ioannis G. Kevrekidis. 2017.
“Extended Dynamic Mode Decomposition with Dictionary Learning: A Data-Driven Adaptive Spectral Decomposition of the Koopman Operator.” Chaos: An Interdisciplinary Journal of Nonlinear Science 27 (10): 103111.
Lin, Yen Ting, Yifeng Tian, Daniel Livescu, and Marian Anghel. 2021.
“Data-Driven Learning for the Mori-Zwanzig Formalism: A Generalization of the Koopman Learning Framework.” arXiv:2101.05873 [Cond-Mat], January.
Lusch, Bethany, J. Nathan Kutz, and Steven L. Brunton. 2018.
“Deep Learning for Universal Linear Embeddings of Nonlinear Dynamics.” Nature Communications 9 (1): 4950.
Mauroy, Alexandre, and Jorge Goncalves. 2020.
“Koopman-Based Lifting Techniques for Nonlinear Systems Identification.” IEEE Transactions on Automatic Control 65 (6): 2550–65.
Morrill, James, Patrick Kidger, Cristopher Salvi, James Foster, and Terry Lyons. 2020. “Neural CDEs for Long Time Series via the Log-ODE Method.” In, 5.
Schmid, Peter J. 2010.
“Dynamic Mode Decomposition of Numerical and Experimental Data.” Journal of Fluid Mechanics 656 (August): 5–28.
Schwantes, Christian R., and Vijay S. Pande. 2015.
“Modeling Molecular Kinetics with tICA and the Kernel Trick.” Journal of Chemical Theory and Computation 11 (2): 600–608.
Tu, Jonathan H., Clarence W. Rowley, Dirk M. Luchtenburg, Steven L. Brunton, and J. Nathan Kutz. 2014.
“On Dynamic Mode Decomposition: Theory and Applications.” Journal of Computational Dynamics 1 (2): 391.
Williams, Matthew O., Ioannis G. Kevrekidis, and Clarence W. Rowley. 2015.
“A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition.” Journal of Nonlinear Science 25 (6): 1307–46.
Williams, Matthew O., Clarence W. Rowley, and Ioannis G. Kevrekidis. 2015.
“A Kernel-Based Method for Data-Driven Koopman Spectral Analysis.” Journal of Computational Dynamics 2 (2): 247.
No comments yet. Why not leave one?