Agarwal, Anish, Muhammad Jehangir Amjad, Devavrat Shah, and Dennis Shen. 2018.
βTime Series Analysis via Matrix Estimation.β arXiv:1802.09064 [Cs, Stat], February.
Andrews, Donald W. K. 1994.
βEmpirical Process Methods in Econometrics.β In
Handbook of Econometrics, edited by Robert F. Engle and Daniel L. McFadden, 4:2247β94. Elsevier.
Antoniano-Villalobos, Isadora, and Stephen G. Walker. 2016.
βA Nonparametric Model for Stationary Time Series.β Journal of Time Series Analysis 37 (1): 126β42.
Arulampalam, M. S., S. Maskell, N. Gordon, and T. Clapp. 2002.
βA Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking.β IEEE Transactions on Signal Processing 50 (2): 174β88.
Ben Taieb, Souhaib, and Amir F. Atiya. 2016.
βA Bias and Variance Analysis for Multistep-Ahead Time Series Forecasting.β IEEE transactions on neural networks and learning systems 27 (1): 62β76.
Bengio, Samy, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. 2015.
βScheduled Sampling for Sequence Prediction with Recurrent Neural Networks.β In
Advances in Neural Information Processing Systems 28, 1171β79. NIPSβ15. Cambridge, MA, USA: Curran Associates, Inc.
Bosq, Denis. 1998. Nonparametric Statistics for Stochastic Processes: Estimation and Prediction. 2nd ed. Lecture Notes in Statistics 110. New York: Springer.
Bosq, Denis, and Delphine Blanke. 2007. Inference and prediction in large dimensions. Wiley series in probability and statistics. Chichester, England ; Hoboken, NJ: John Wiley/Dunod.
BretΓ³, Carles, Daihai He, Edward L. Ionides, and Aaron A. King. 2009.
βTime Series Analysis via Mechanistic Models.β The Annals of Applied Statistics 3 (1): 319β48.
Brunton, Steven L., Joshua L. Proctor, and J. Nathan Kutz. 2016.
βDiscovering Governing Equations from Data by Sparse Identification of Nonlinear Dynamical Systems.β Proceedings of the National Academy of Sciences 113 (15): 3932β37.
BΓΌhlmann, Peter, and Hans R KΓΌnsch. 1999.
βBlock Length Selection in the Bootstrap for Time Series.β Computational Statistics & Data Analysis 31 (3): 295β310.
Campbell, Andrew, Yuyang Shi, Tom Rainforth, and Arnaud Doucet. 2021.
βOnline Variational Filtering and Parameter Learning.β In.
Carmi, Avishy Y. 2014.
βCompressive System Identification.β In
Compressed Sensing & Sparse Filtering, edited by Avishy Y. Carmi, Lyudmila Mihaylova, and Simon J. Godsill, 281β324. Signals and Communication Technology. Springer Berlin Heidelberg.
Cassidy, Ben, Caroline Rae, and Victor Solo. 2015.
βBrain Activity: Connectivity, Sparsity, and Mutual Information.β IEEE Transactions on Medical Imaging 34 (4): 846β60.
Chan, Ngai Hang, Ye Lu, and Chun Yip Yau. 2016.
βFactor Modelling for High-Dimensional Time Series: Inference and Model Selection.β Journal of Time Series Analysis, January, n/aβ.
Chevillon, Guillaume. 2007.
βDirect Multi-Step Estimation and Forecasting.β Journal of Economic Surveys 21 (4): 746β85.
Cook, Alex R., Wilfred Otten, Glenn Marion, Gavin J. Gibson, and Christopher A. Gilligan. 2007.
βEstimation of Multiple Transmission Rates for Epidemics in Heterogeneous Populations.β Proceedings of the National Academy of Sciences 104 (51): 20392β97.
Corenflos, Adrien, James Thornton, George Deligiannidis, and Arnaud Doucet. 2021.
βDifferentiable Particle Filtering via Entropy-Regularized Optimal Transport.β arXiv:2102.07850 [Cs, Stat], June.
βββ. 2012. Time Series Analysis by State Space Methods. 2nd ed. Oxford Statistical Science Series 38. Oxford: Oxford University Press.
Eden, U, L Frank, R Barbieri, V Solo, and E Brown. 2004.
βDynamic Analysis of Neural Encoding by Point Process Adaptive Filtering.β Neural Computation 16 (5): 971β98.
Fan, Jianqing, and Qiwei Yao. 2003. Nonlinear Time Series: Nonparametric and Parametric Methods. Springer Series in Statistics. New York: Springer.
Fearnhead, Paul, and Hans R. KΓΌnsch. 2018.
βParticle Filters and Data Assimilation.β Annual Review of Statistics and Its Application 5 (1): 421β49.
Flunkert, Valentin, David Salinas, and Jan Gasthaus. 2017.
βDeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks.β arXiv:1704.04110 [Cs, Stat], April.
Fraser, Andrew M. 2008. Hidden Markov Models and Dynamical Systems. Philadelphia, PA: Society for Industrial and Applied Mathematics.
Gorad, Ajinkya, Zheng Zhao, and Simo sΓ€rkkΓ€. 2020. βParameter Estimation in Non-Linear State-Space Models by Automatic Differentiation of Non-Linear Kalman Filters.β In, 6.
Gu, Albert, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher RΓ©. 2021.
βCombining Recurrent, Convolutional, and Continuous-Time Models with Linear State-Space Layers.β arXiv:2110.13985 [Cs], October.
Harvey, A., and S. J. Koopman. 2005.
βStructural Time Series Models.β In
Encyclopedia of Biostatistics. John Wiley & Sons, Ltd.
Hazan, Elad, Karan Singh, and Cyril Zhang. 2017.
βLearning Linear Dynamical Systems via Spectral Filtering.β In
NIPS.
He, Daihai, Edward L. Ionides, and Aaron A. King. 2010.
βPlug-and-Play Inference for Disease Dynamics: Measles in Large and Small Populations as a Case Study.β Journal of The Royal Society Interface 7 (43): 271β83.
Hefny, Ahmed, Carlton Downey, and Geoffrey Gordon. 2015.
βA New View of Predictive State Methods for Dynamical System Learning.β arXiv:1505.05310 [Cs, Stat], May.
Hong, X., R. J. Mitchell, S. Chen, C. J. Harris, K. Li, and G. W. Irwin. 2008.
βModel Selection Approaches for Non-Linear System Identification: A Review.β International Journal of Systems Science 39 (10): 925β46.
Ionides, E. L., C. BretΓ³, and A. A. King. 2006.
βInference for Nonlinear Dynamical Systems.β Proceedings of the National Academy of Sciences 103 (49): 18438β43.
Ionides, Edward L., Anindya Bhadra, Yves AtchadΓ©, and Aaron King. 2011.
βIterated Filtering.β The Annals of Statistics 39 (3): 1776β1802.
Jonschkowski, Rico, Divyam Rastogi, and Oliver Brock. 2018.
βDifferentiable Particle Filters: End-to-End Learning with Algorithmic Priors.β arXiv:1805.11122 [Cs, Stat], May.
Kalli, Maria, and Jim E. Griffin. 2018.
βBayesian Nonparametric Vector Autoregressive Models.β Journal of Econometrics 203 (2): 267β82.
Kantz, Holger, and Thomas Schreiber. 2004. Nonlinear Time Series Analysis. 2nd ed. Cambridge, UK ; New York: Cambridge University Press.
Kass, Robert E., Shun-Ichi Amari, Kensuke Arai, Emery N. Brown, Casey O. Diekman, Markus Diesmann, Brent Doiron, et al. 2018.
βComputational Neuroscience: Mathematical and Statistical Perspectives.β Annual Review of Statistics and Its Application 5 (1): 183β214.
Kemerait, R., and D. Childers. 1972.
βSignal Detection and Extraction by Cepstrum Techniques.β IEEE Transactions on Information Theory 18 (6): 745β59.
Kendall, Bruce E., Stephen P. Ellner, Edward McCauley, Simon N. Wood, Cheryl J. Briggs, William W. Murdoch, and Peter Turchin. 2005.
βPopulation Cycles in the Pine Looper Moth: Dynamical Tests of Mechanistic Hypotheses.β Ecological Monographs 75 (2): 259β76.
Kitagawa, Genshiro. 1987.
βNon-Gaussian StateβSpace Modeling of Nonstationary Time Series.β Journal of the American Statistical Association 82 (400): 1032β41.
βββ. 1996.
βMonte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models.β Journal of Computational and Graphical Statistics 5 (1): 1β25.
Kitagawa, Genshiro, and Will Gersch. 1996.
Smoothness Priors Analysis of Time Series. Lecture notes in statistics 116. New York, NY: Springer New York : Imprint : Springer.
Lamb, Alex, Anirudh Goyal, Ying Zhang, Saizheng Zhang, Aaron Courville, and Yoshua Bengio. 2016.
βProfessor Forcing: A New Algorithm for Training Recurrent Networks.β In
Advances In Neural Information Processing Systems.
Levin, David N. 2017.
βThe Inner Structure of Time-Dependent Signals.β arXiv:1703.08596 [Cs, Math, Stat], March.
Ljung, Lennart. 2010.
βPerspectives on System Identification.β Annual Reviews in Control 34 (1): 1β12.
Lu, Peter Y., Joan AriΓ±o, and Marin SoljaΔiΔ. 2021.
βDiscovering Sparse Interpretable Dynamics from Partial Observations.β arXiv:2107.10879 [Physics], July.
Morrill, James, Patrick Kidger, Cristopher Salvi, James Foster, and Terry Lyons. 2020. βNeural CDEs for Long Time Series via the Log-ODE Method.β In, 5.
Nerrand, O., P. Roussel-Ragot, L. Personnaz, G. Dreyfus, and S. Marcos. 1993.
βNeural Networks and Nonlinear Adaptive Filtering: Unifying Concepts and New Algorithms.β Neural Computation 5 (2): 165β99.
Pereyra, M., P. Schniter, Γ Chouzenoux, J. C. Pesquet, J. Y. Tourneret, A. O. Hero, and S. McLaughlin. 2016.
βA Survey of Stochastic Simulation and Optimization Methods in Signal Processing.β IEEE Journal of Selected Topics in Signal Processing 10 (2): 224β41.
Pham, Tung, and Victor Panaretos. 2016.
βMethodology and Convergence Rates for Functional Time Series Regression.β arXiv:1612.07197 [Math, Stat], December.
Pillonetto, Gianluigi. 2016.
βThe Interplay Between System Identification and Machine Learning.β arXiv:1612.09158 [Cs, Stat], December.
Plis, Sergey, David Danks, and Jianyu Yang. 2015.
βMesochronal Structure Learning.β Uncertainty in Artificial Intelligence : Proceedings of the β¦ Conference. Conference on Uncertainty in Artificial Intelligence 31 (July).
Pugachev, V. S., and I. N. SinitοΈ sοΈ‘yn. 2001. Stochastic systems: theory and applications. River Edge, NJ: World Scientific.
Robinson, P. M. 1983.
βNonparametric Estimators for Time Series.β Journal of Time Series Analysis 4 (3): 185β207.
Routtenberg, Tirza, and Joseph Tabrikian. 2010.
βBlind MIMO-AR System Identification and Source Separation with Finite-Alphabet.β IEEE Transactions on Signal Processing 58 (3): 990β1000.
Runge, Jakob, Reik V. Donner, and JΓΌrgen Kurths. 2015.
βOptimal Model-Free Prediction from Multivariate Time Series.β Physical Review E 91 (5).
SΓ€rkkΓ€, Simo. 2007.
βOn Unscented Kalman Filtering for State Estimation of Continuous-Time Nonlinear Systems.β IEEE Transactions on Automatic Control 52 (9): 1631β41.
SjΓΆberg, Jonas, Qinghua Zhang, Lennart Ljung, Albert Benveniste, Bernard Delyon, Pierre-Yves Glorennec, HΓ₯kan Hjalmarsson, and Anatoli Juditsky. 1995.
βNonlinear Black-Box Modeling in System Identification: A Unified Overview.β Automatica, Trends in System Identification, 31 (12): 1691β1724.
StΓ€dler, Nicolas, and Sach Mukherjee. 2013.
βPenalized Estimation in High-Dimensional Hidden Markov Models with State-Specific Graphical Models.β The Annals of Applied Statistics 7 (4): 2157β79.
Tallec, Corentin, and Yann Ollivier. 2017.
βUnbiasing Truncated Backpropagation Through Time.β arXiv:1705.08209 [Cs], May.
Taniguchi, Masanobu, and Yoshihide Kakizawa. 2000. Asymptotic Theory of Statistical Inference for Time Series. Springer Series in Statistics. New York: Springer.
Tanizaki, Hisashi. 2001.
βEstimation of Unknown Parameters in Nonlinear and Non-Gaussian State-Space Models.β Journal of Statistical Planning and Inference 96 (2): 301β23.
Unser, Michael A., and Pouya Tafti. 2014.
An Introduction to Sparse Stochastic Processes. New York: Cambridge University Press.
Wedig, W. 1984.
βA Critical Review of Methods in Stochastic Structural Dynamics.β Nuclear Engineering and Design 79 (3): 281β87.
Wen, Ruofeng, Kari Torkkola, and Balakrishnan Narayanaswamy. 2017.
βA Multi-Horizon Quantile Recurrent Forecaster.β arXiv:1711.11053 [Stat], November.
Williams, Ronald J., and David Zipser. 1989.
βA Learning Algorithm for Continually Running Fully Recurrent Neural Networks.β Neural Computation 1 (2): 270β80.
No comments yet. Why not leave one?