Andrieu, Christophe, and Johannes Thoms. 2008.
βA Tutorial on Adaptive MCMC.β Statistics and Computing 18 (4): 343β73.
AtchadΓ©, Yves, Gersende Fort, Eric Moulines, and Pierre Priouret. 2011.
βAdaptive Markov Chain Monte Carlo: Theory and Methods.β In
Bayesian Time Series Models, edited by David Barber, A. Taylan Cemgil, and Silvia Chiappa, 32β51. Cambridge: Cambridge University Press.
Au, Khai Xiang, Matthew M. Graham, and Alexandre H. Thiery. 2020.
βManifold Lifting: Scaling MCMC to the Vanishing Noise Regime.βBales, Ben, Arya Pourzanjani, Aki Vehtari, and Linda Petzold. 2019.
βSelecting the Metric in Hamiltonian Monte Carlo.β arXiv:1905.11916 [Stat], May.
Betancourt, Michael. 2017.
βA Conceptual Introduction to Hamiltonian Monte Carlo.β arXiv:1701.02434 [Stat], January.
Betancourt, Michael, Simon Byrne, Sam Livingstone, and Mark Girolami. 2017.
βThe Geometric Foundations of Hamiltonian Monte Carlo.β Bernoulli 23 (4A): 2257β98.
Bousquet, Olivier, Ulrike von Luxburg, and Gunnar Rtsch. 2004. Advanced Lectures on Machine Learning: ML Summer Schools 2003, Canberra, Australia, February 2-14, 2003, T Bingen, Germany, August 4-16, 2003, Revised Lectures. Springer.
Brosse, Nicolas, Γric Moulines, and Alain Durmus. 2018.
βThe Promises and Pitfalls of Stochastic Gradient Langevin Dynamics.β In
Proceedings of the 32nd International Conference on Neural Information Processing Systems, 8278β88. NIPSβ18. Red Hook, NY, USA: Curran Associates Inc.
Calderhead, Ben. 2014.
βA General Construction for Parallelizing MetropolisβHastings Algorithms.β Proceedings of the National Academy of Sciences 111 (49): 17408β13.
Carpenter, Bob, Matthew D. Hoffman, Marcus Brubaker, Daniel Lee, Peter Li, and Michael Betancourt. 2015.
βThe Stan Math Library: Reverse-Mode Automatic Differentiation in C++.β arXiv Preprint arXiv:1509.07164.
Caterini, Anthony L., Arnaud Doucet, and Dino Sejdinovic. 2018.
βHamiltonian Variational Auto-Encoder.β In
Advances in Neural Information Processing Systems.
Chakraborty, Saptarshi, Suman K. Bhattacharya, and Kshitij Khare. 2019.
βEstimating Accuracy of the MCMC Variance Estimator: A Central Limit Theorem for Batch Means Estimators.β arXiv:1911.00915 [Math, Stat], November.
Cornish, Robert, Paul Vanetti, Alexandre Bouchard-CΓ΄tΓ©, George Deligiannidis, and Arnaud Doucet. 2019.
βScalable Metropolis-Hastings for Exact Bayesian Inference with Large Datasets.β arXiv:1901.09881 [Cs, Stat], January.
Cotter, S. L., G. O. Roberts, A. M. Stuart, and D. White. 2013.
βMCMC Methods for Functions: Modifying Old Algorithms to Make Them Faster.β Statistical Science 28 (3): 424β46.
Dhaka, Akash Kumar, and Alejandro Catalina. 2020. βRobust, Accurate Stochastic Optimization for Variational Inference,β 13.
Diaconis, Persi, and David Freedman. 1999.
βIterated Random Functions.β SIAM Review 1 (1): 45β76.
Durmus, Alain, and Eric Moulines. 2016.
βHigh-Dimensional Bayesian Inference via the Unadjusted Langevin Algorithm.β arXiv:1605.01559 [Math, Stat], May.
Fan, Y., and S. A. Sisson. 2010.
βReversible Jump Markov Chain Monte Carlo.β arXiv.
Foreman-Mackey, Daniel, David W. Hogg, Dustin Lang, and Jonathan Goodman. 2013.
βEmcee: The MCMC Hammer.β Publications of the Astronomical Society of the Pacific 125 (925): 306.
Ge, Rong, Holden Lee, and Andrej Risteski. 2020.
βSimulated Tempering Langevin Monte Carlo II: An Improved Proof Using Soft Markov Chain Decomposition.β arXiv:1812.00793 [Cs, Math, Stat], September.
Girolami, Mark, and Ben Calderhead. 2011.
βRiemann Manifold Langevin and Hamiltonian Monte Carlo Methods.β Journal of the Royal Statistical Society: Series B (Statistical Methodology) 73 (2): 123β214.
Glynn, Peter W., and Chang-Han Rhee. 2014.
βExact Estimation for Markov Chain Equilibrium Expectations.β Journal of Applied Probability 51 (A): 377β89.
Goodman, Jonathan, and Jonathan Weare. 2010.
βEnsemble Samplers with Affine Invariance.β Communications in Applied Mathematics and Computational Science 5 (1): 65β80.
Goodman, Noah, Vikash Mansinghka, Daniel Roy, Keith Bonawitz, and Daniel Tarlow. 2012.
βChurch: A Language for Generative Models.β arXiv:1206.3255, June.
Goodrich, Ben, Andrew Gelman, Matthew D. Hoffman, Daniel Lee, Bob Carpenter, Michael Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. 2017.
βStan : A Probabilistic Programming Language.β Journal of Statistical Software 76 (1).
Hodgkinson, Liam, Robert Salomone, and Fred Roosta. 2019.
βImplicit Langevin Algorithms for Sampling From Log-Concave Densities.β arXiv:1903.12322 [Cs, Stat], March.
Huang, Zaijing, and Andrew Gelman. 2005.
βSampling for Bayesian Computation with Large Datasets.β SSRN Electronic Journal.
Jacob, Pierre E., John OβLeary, and Yves F. AtchadΓ©. 2019.
βUnbiased Markov Chain Monte Carlo with Couplings.β arXiv:1708.03625 [Stat], July.
Jolicoeur-Martineau, Alexia, Ke Li, RΓ©mi PichΓ©-Taillefer, Tal Kachman, and Ioannis Mitliagkas. 2021.
βGotta Go Fast When Generating Data with Score-Based Models.β arXiv.
Korattikara, Anoop, Yutian Chen, and Max Welling. 2015.
βSequential Tests for Large-Scale Learning.β Neural Computation 28 (1): 45β70.
Lele, Subhash R., Khurram Nadeem, and Byron Schmuland. 2010.
βEstimability and Likelihood Inference for Generalized Linear Mixed Models Using Data Cloning.β Journal of the American Statistical Association 105 (492): 1617β25.
Ma, Yi-An, Tianqi Chen, and Emily B. Fox. 2015.
βA Complete Recipe for Stochastic Gradient MCMC.β In
Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2, 2917β25. NIPSβ15. Cambridge, MA, USA: MIT Press.
Mangoubi, Oren, and Aaron Smith. 2017.
βRapid Mixing of Hamiltonian Monte Carlo on Strongly Log-Concave Distributions.β arXiv:1708.07114 [Math, Stat], August.
Marzouk, Youssef, Tarek Moselhy, Matthew Parno, and Alessio Spantini. 2016.
βSampling via Measure Transport: An Introduction.β In
Handbook of Uncertainty Quantification, edited by Roger Ghanem, David Higdon, and Houman Owhadi, 1:1β41. Cham: Springer Heidelberg.
Neal, Radford M. 1993.
βProbabilistic Inference Using Markov Chain Monte Carlo Methods.β Technical Report CRGTR-93-1. Toronto Canada: Department of Computer Science, University of Toronto,.
βββ. 2011.
βMCMC Using Hamiltonian Dynamics.β In
Handbook for Markov Chain Monte Carlo, edited by Steve Brooks, Andrew Gelman, Galin L. Jones, and Xiao-Li Meng. Boca Raton: Taylor & Francis.
Norton, Richard A., and Colin Fox. 2016.
βTuning of MCMC with Langevin, Hamiltonian, and Other Stochastic Autoregressive Proposals.β arXiv:1610.00781 [Math, Stat], October.
Parno, Matthew D., and Youssef M. Marzouk. 2018.
βTransport Map Accelerated Markov Chain Monte Carlo.β SIAM/ASA Journal on Uncertainty Quantification 6 (2): 645β82.
Plummer, Martyn. 2023.
βSimulation-Based Bayesian Analysis.β Annual Review of Statistics and Its Application 10 (1): 401β25.
Propp, James Gary, and David Bruce Wilson. 1996.
βExact Sampling with Coupled Markov Chains and Applications to Statistical Mechanics.β In
Random Structures & Algorithms, 9:223β52. New York, NY, USA: John Wiley & Sons, Inc.
βββ. 1998.
βCoupling from the Past: A Userβs Guide.β In
Microsurveys in Discrete Probability, edited by David Aldous and James Gary Propp, 41:181β92. DIMACS Series in Discrete Mathematics and Theoretical Computer Science. Providence, Rhode Island: American Mathematical Society.
Robert, Christian P., VΓctor Elvira, Nick Tawn, and Changye Wu. 2018.
βAccelerating MCMC Algorithms.β WIREs Computational Statistics 10 (5): e1435.
Roberts, Gareth O., and Jeffrey S. Rosenthal. 2004.
βGeneral State Space Markov Chains and MCMC Algorithms.β Probability Surveys 1 (0): 20β71.
Roberts, G.O., and A.F.M. Smith. 1994.
βSimple Conditions for the Convergence of the Gibbs Sampler and Metropolis-Hastings Algorithms.β Stochastic Processes and Their Applications 49 (2): 207β16.
Rubinstein, Reuven Y., and Dirk P. Kroese. 2016. Simulation and the Monte Carlo Method. 3 edition. Wiley series in probability and statistics. Hoboken, New Jersey: Wiley.
Rubinstein, Reuven Y., Ad Ridder, and Radislav Vaisman. 2014. Fast Sequential Monte Carlo Methods for Counting and Optimization. Wiley Series in Probability and Statistics. Hoboken, New Jersey: Wiley.
Salimans, Tim, Diederik Kingma, and Max Welling. 2015.
βMarkov Chain Monte Carlo and Variational Inference: Bridging the Gap.β In
Proceedings of the 32nd International Conference on Machine Learning (ICML-15), 1218β26. ICMLβ15. Lille, France: JMLR.org.
Schuster, Ingmar, Heiko Strathmann, Brooks Paige, and Dino Sejdinovic. 2017.
βKernel Sequential Monte Carlo.β In
ECML-PKDD 2017.
Sisson, S. A., Y. Fan, and Mark M. Tanaka. 2007.
βSequential Monte Carlo Without Likelihoods.β Proceedings of the National Academy of Sciences 104 (6): 1760β65.
Syed, Saifuddin, Alexandre Bouchard-CΓ΄tΓ©, George Deligiannidis, and Arnaud Doucet. 2020.
βNon-Reversible Parallel Tempering: A Scalable Highly Parallel MCMC Scheme.β arXiv:1905.02939 [Stat], November.
Vehtari, Aki, Andrew Gelman, Tuomas Sivula, Pasi JylΓ€nki, Dustin Tran, Swupnil Sahai, Paul Blomstedt, John P. Cunningham, David Schiminovich, and Christian Robert. 2019.
βExpectation Propagation as a Way of Life: A Framework for Bayesian Inference on Partitioned Data.β arXiv:1412.4869 [Stat], November.
Wang, Xiangyu, and David B. Dunson. 2013.
βParallelizing MCMC via Weierstrass Sampler,β December.
Welling, Max, and Yee Whye Teh. 2011.
βBayesian Learning via Stochastic Gradient Langevin Dynamics.β In
Proceedings of the 28th International Conference on International Conference on Machine Learning, 681β88. ICMLβ11. Madison, WI, USA: Omnipress.
Xifara, T., C. Sherlock, S. Livingstone, S. Byrne, and M. Girolami. 2014.
βLangevin Diffusions and the Metropolis-Adjusted Langevin Algorithm.β Statistics & Probability Letters 91 (Supplement C): 14β19.
Xu, Kai, Hong Ge, Will Tebbutt, Mohamed Tarek, Martin Trapp, and Zoubin Ghahramani. 2019.
βAdvancedHMC.jl: A Robust, Modular and Efficient Implementation of Advanced HMC Algorithms,β October.
Xu, Zuheng, Naitong Chen, and Trevor Campbell. 2023.
βMixFlows: Principled Variational Inference via Mixed Flows.β arXiv.
Yoshida, Ryo, and Mike West. 2010.
βBayesian Learning in Sparse Graphical Factor Models via Variational Mean-Field Annealing.β Journal of Machine Learning Research 11 (May): 1771β98.
No comments yet. Why not leave one?