Afshar, Hadi Mohasel, and Justin Domke. 2015. “Reflection, Refraction, and Hamiltonian Monte Carlo,” 9.
Bales, Ben, Arya Pourzanjani, Aki Vehtari, and Linda Petzold. 2019.
“Selecting the Metric in Hamiltonian Monte Carlo.” arXiv:1905.11916 [Stat], May.
Betancourt, Michael. 2017.
“A Conceptual Introduction to Hamiltonian Monte Carlo.” arXiv:1701.02434 [Stat], January.
Betancourt, Michael, Simon Byrne, Sam Livingstone, and Mark Girolami. 2017.
“The Geometric Foundations of Hamiltonian Monte Carlo.” Bernoulli 23 (4A): 2257–98.
Carpenter, Bob, Matthew D. Hoffman, Marcus Brubaker, Daniel Lee, Peter Li, and Michael Betancourt. 2015.
“The Stan Math Library: Reverse-Mode Automatic Differentiation in C++.” arXiv Preprint arXiv:1509.07164.
Caterini, Anthony L., Arnaud Doucet, and Dino Sejdinovic. 2018.
“Hamiltonian Variational Auto-Encoder.” In
Advances in Neural Information Processing Systems.
Dai, Hanjun, Rishabh Singh, Bo Dai, Charles Sutton, and Dale Schuurmans. 2020. “Learning Discrete Energy-Based Models via Auxiliary-Variable Local Exploration,” 13.
Devlin, Lee, Paul Horridge, Peter L Green, and Simon Maskell. 2021. “The No-U-Turn Sampler as a Proposal Distribution in a Sequential Monte Carlo Sampler with a Near-Optimal L-Kernel,” 5.
Durmus, Alain, and Eric Moulines. 2016.
“High-Dimensional Bayesian Inference via the Unadjusted Langevin Algorithm.” arXiv:1605.01559 [Math, Stat], May.
Girolami, Mark, and Ben Calderhead. 2011.
“Riemann Manifold Langevin and Hamiltonian Monte Carlo Methods.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 73 (2): 123–214.
Goodrich, Ben, Andrew Gelman, Matthew D. Hoffman, Daniel Lee, Bob Carpenter, Michael Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. 2017.
“Stan : A Probabilistic Programming Language.” Journal of Statistical Software 76 (1).
Hoffman, M D, and A Gelman. 2011. “The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo.” Arxiv Preprint arXiv:1111.4246.
Ma, Yi-An, Tianqi Chen, and Emily B. Fox. 2015.
“A Complete Recipe for Stochastic Gradient MCMC.” In
Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2, 2917–25. NIPS’15. Cambridge, MA, USA: MIT Press.
Mangoubi, Oren, and Aaron Smith. 2017.
“Rapid Mixing of Hamiltonian Monte Carlo on Strongly Log-Concave Distributions.” arXiv:1708.07114 [Math, Stat], August.
Meent, Jan-Willem van de, Brooks Paige, Hongseok Yang, and Frank Wood. 2021.
“An Introduction to Probabilistic Programming.” arXiv:1809.10756 [Cs, Stat], October.
Mototake, Yoh-ichi. 2019. “Conservation Law Estimation by Extracting the Symmetry of a Dynamical System Using a Deep Neural Network.” In Machine Learning and the Physical Sciences Workshop at the 33rd Conference on Neural Information Processing Systems (NeurIPS), 8.
Neal, Radford M. 2011.
“MCMC Using Hamiltonian Dynamics.” In
Handbook for Markov Chain Monte Carlo, edited by Steve Brooks, Andrew Gelman, Galin L. Jones, and Xiao-Li Meng. Boca Raton: Taylor & Francis.
Robert, Christian P., Víctor Elvira, Nick Tawn, and Changye Wu. 2018.
“Accelerating MCMC Algorithms.” WIREs Computational Statistics 10 (5): e1435.
Sansone, Emanuele. 2022.
“LSB: Local Self-Balancing MCMC in Discrete Spaces.” In
Proceedings of the 39th International Conference on Machine Learning, 19205–20. PMLR.
Strathmann, Heiko, Dino Sejdinovic, Samuel Livingstone, Zoltan Szabo, and Arthur Gretton. 2015.
“Gradient-Free Hamiltonian Monte Carlo with Efficient Kernel Exponential Families.” In
Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 1, 955–63. NIPS’15. Montreal, Canada: MIT Press.
Xifara, T., C. Sherlock, S. Livingstone, S. Byrne, and M. Girolami. 2014.
“Langevin Diffusions and the Metropolis-Adjusted Langevin Algorithm.” Statistics & Probability Letters 91 (Supplement C): 14–19.
Xu, Kai, Hong Ge, Will Tebbutt, Mohamed Tarek, Martin Trapp, and Zoubin Ghahramani. 2019.
“AdvancedHMC.jl: A Robust, Modular and Efficient Implementation of Advanced HMC Algorithms,” October.
No comments yet. Why not leave one?