Andrieu, Christophe, and Johannes Thoms. 2008.
“A Tutorial on Adaptive MCMC.” Statistics and Computing 18 (4): 343–73.
https://doi.org/10.1007/s11222-008-9110-y.
Atchadé, Yves, Gersende Fort, Eric Moulines, and Pierre Priouret. 2011.
“Adaptive Markov Chain Monte Carlo: Theory and Methods.” In
Bayesian Time Series Models, edited by David Barber, A. Taylan Cemgil, and Silvia Chiappa, 32–51.
Cambridge:
Cambridge University Press.
https://doi.org/10.1017/CBO9780511984679.003.
Bach, Francis. 2015.
“On the Equivalence Between Kernel Quadrature Rules and Random Feature Expansions.” 2015.
http://arxiv.org/abs/1502.06800.
Bales, Ben, Arya Pourzanjani, Aki Vehtari, and Linda Petzold. 2019.
“Selecting the Metric in Hamiltonian Monte Carlo.” May 28, 2019.
http://arxiv.org/abs/1905.11916.
Betancourt, Michael. 2017.
“A Conceptual Introduction to Hamiltonian Monte Carlo.” January 9, 2017.
http://arxiv.org/abs/1701.02434.
———. 2018.
“The Convergence of Markov Chain Monte Carlo Methods: From the Metropolis Method to Hamiltonian Monte Carlo.” Annalen Der Physik, March.
https://doi.org/10.1002/andp.201700214.
Betancourt, Michael, Simon Byrne, Sam Livingstone, and Mark Girolami. 2017.
“The Geometric Foundations of Hamiltonian Monte Carlo.” Bernoulli 23 (November): 2257–98.
https://doi.org/10.3150/16-BEJ810.
Bousquet, Olivier, Ulrike von Luxburg, and Gunnar Rtsch. 2004. Advanced Lectures on Machine Learning: ML Summer Schools 2003, Canberra, Australia, February 2-14, 2003, T Bingen, Germany, August 4-16, 2003, Revised Lectures. Springer.
Brosse, Nicolas, Alain Durmus, and Eric Moulines. n.d. “The Promises and Pitfalls of Stochastic Gradient Langevin Dynamics,” 11.
Calderhead, Ben. 2014.
“A General Construction for Parallelizing Metropolis−Hastings Algorithms.” Proceedings of the National Academy of Sciences 111 (49): 17408–13.
https://doi.org/10.1073/pnas.1408184111.
Carpenter, Bob, Matthew D. Hoffman, Marcus Brubaker, Daniel Lee, Peter Li, and Michael Betancourt. 2015.
“The Stan Math Library: Reverse-Mode Automatic Differentiation in C++.” 2015.
http://arxiv.org/abs/1509.07164.
Caterini, Anthony L., Arnaud Doucet, and Dino Sejdinovic. 2018.
“Hamiltonian Variational Auto-Encoder.” In
Advances in Neural Information Processing Systems.
http://arxiv.org/abs/1805.11328.
Chakraborty, Saptarshi, Suman K. Bhattacharya, and Kshitij Khare. 2019.
“Estimating Accuracy of the MCMC Variance Estimator: A Central Limit Theorem for Batch Means Estimators.” November 3, 2019.
http://arxiv.org/abs/1911.00915.
Cornish, Robert, Paul Vanetti, Alexandre Bouchard-Côté, George Deligiannidis, and Arnaud Doucet. 2019.
“Scalable Metropolis-Hastings for Exact Bayesian Inference with Large Datasets.” January 28, 2019.
http://arxiv.org/abs/1901.09881.
Cotter, S. L., G. O. Roberts, A. M. Stuart, and D. White. 2013.
“MCMC Methods for Functions: Modifying Old Algorithms to Make Them Faster.” Statistical Science 28 (3): 424–46.
https://doi.org/10.1214/13-STS421.
Diaconis, Persi, and David Freedman. 1999.
“Iterated Random Functions.” SIAM Review 1 (1): 45–76.
https://doi.org/10.1137/S0036144598338446.
Durmus, Alain, and Eric Moulines. 2016.
“High-Dimensional Bayesian Inference via the Unadjusted Langevin Algorithm.” May 5, 2016.
http://arxiv.org/abs/1605.01559.
Ge, Rong, Holden Lee, and Andrej Risteski. 2020.
“Simulated Tempering Langevin Monte Carlo II: An Improved Proof Using Soft Markov Chain Decomposition.” September 9, 2020.
http://arxiv.org/abs/1812.00793.
Girolami, Mark, and Ben Calderhead. 2011.
“Riemann Manifold Langevin and Hamiltonian Monte Carlo Methods.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 73 (2): 123–214.
https://doi.org/10.1111/j.1467-9868.2010.00765.x.
Glynn, Peter W., and Chang-Han Rhee. 2014.
“Exact Estimation for Markov Chain Equilibrium Expectations.” Journal of Applied Probability 51 (A): 377–89.
https://doi.org/10.1239/jap/1417528487.
Goodman, Noah, Vikash Mansinghka, Daniel Roy, Keith Bonawitz, and Daniel Tarlow. 2012.
“Church: A Language for Generative Models.” June 13, 2012.
http://arxiv.org/abs/1206.3255.
Goodrich, Ben, Andrew Gelman, Matthew D. Hoffman, Daniel Lee, Bob Carpenter, Michael Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. 2017.
“Stan : A Probabilistic Programming Language.” Journal of Statistical Software 76 (1).
https://doi.org/10.18637/jss.v076.i01.
Hodgkinson, Liam, Robert Salomone, and Fred Roosta. 2019.
“Implicit Langevin Algorithms for Sampling From Log-Concave Densities.” March 28, 2019.
http://arxiv.org/abs/1903.12322.
Jacob, Pierre E., John O’Leary, and Yves F. Atchadé. 2017.
“Unbiased Markov Chain Monte Carlo with Couplings.” August 11, 2017.
http://arxiv.org/abs/1708.03625.
———. 2019.
“Unbiased Markov Chain Monte Carlo with Couplings.” July 17, 2019.
http://arxiv.org/abs/1708.03625.
Korattikara, Anoop, Yutian Chen, and Max Welling. 2015.
“Sequential Tests for Large-Scale Learning.” Neural Computation 28 (1): 45–70.
https://doi.org/10.1162/NECO_a_00796.
Lele, S. R., B. Dennis, and F. Lutscher. 2007.
“Data Cloning: Easy Maximum Likelihood Estimation for Complex Ecological Models Using Bayesian Markov Chain Monte Carlo Methods.” Ecology Letters 10 (7): 551.
https://doi.org/10.1111/j.1461-0248.2007.01047.x.
Lele, Subhash R., Khurram Nadeem, and Byron Schmuland. 2010.
“Estimability and Likelihood Inference for Generalized Linear Mixed Models Using Data Cloning.” Journal of the American Statistical Association 105 (492): 1617–25.
https://doi.org/10.1198/jasa.2010.tm09757.
Liu, Jun S. 1996.
“Metropolized Independent Sampling with Comparisons to Rejection Sampling and Importance Sampling.” Statistics and Computing 6 (2): 113–19.
https://doi.org/10.1007/BF00162521.
Mangoubi, Oren, and Aaron Smith. 2017.
“Rapid Mixing of Hamiltonian Monte Carlo on Strongly Log-Concave Distributions.” August 23, 2017.
http://arxiv.org/abs/1708.07114.
Neal, Radford M. 1993.
“Probabilistic Inference Using Markov Chain Monte Carlo Methods.” Technical Report CRGTR-93-1.
Toronto Canada:
Department of Computer Science, University of Toronto,.
https://www.cs.princeton.edu/courses/archive/fall07/cos597C/readings/Neal1993.pdf.
———. 2004.
“Improving Asymptotic Variance of MCMC Estimators: Non-Reversible Chains Are Better.” July 15, 2004.
http://arxiv.org/abs/math/0407281.
———. 2011.
“MCMC Using Hamiltonian Dynamics.” In
Handbook for Markov Chain Monte Carlo, edited by Steve Brooks, Andrew Gelman, Galin L. Jones, and Xiao-Li Meng.
Boca Raton:
Taylor & Francis.
http://arxiv.org/abs/1206.1901.
Nitanda, Atsushi, Denny Wu, and Taiji Suzuki. 2020.
“Particle Dual Averaging: Optimization of Mean Field Neural Networks with Global Convergence Rate Analysis.” December 31, 2020.
http://arxiv.org/abs/2012.15477.
Norton, Richard A., and Colin Fox. 2016.
“Tuning of MCMC with Langevin, Hamiltonian, and Other Stochastic Autoregressive Proposals.” October 3, 2016.
http://arxiv.org/abs/1610.00781.
Propp, James Gary, and David Bruce Wilson. 1996.
“Exact Sampling with Coupled Markov Chains and Applications to Statistical Mechanics.” In
Random Structures & Algorithms, 9:223–52.
New York, NY, USA:
John Wiley & Sons, Inc. https://doi.org/10.1002/(SICI)1098-2418(199608/09)9:1/2<223::AID-RSA14>3.0.CO;2-O.
———. 1998.
“Coupling from the Past: A User’s Guide.” In
Microsurveys in Discrete Probability, edited by David Aldous and James Gary Propp, 41:181–92.
DIMACS Series in
Discrete Mathematics and
Theoretical Computer Science.
Providence, Rhode Island:
American Mathematical Society.
https://doi.org/10.1090/dimacs/041.
Robert, Christian P., Víctor Elvira, Nick Tawn, and Changye Wu. 2018.
“Accelerating MCMC Algorithms.” WIREs Computational Statistics 10 (5, 5): e1435.
https://doi.org/10.1002/wics.1435.
Roberts, G. O., and A. F. M. Smith. 1994.
“Simple Conditions for the Convergence of the Gibbs Sampler and Metropolis-Hastings Algorithms.” Stochastic Processes and Their Applications 49 (2, 2): 207–16.
https://doi.org/10.1016/0304-4149(94)90134-1.
Roberts, Gareth O., and Jeffrey S. Rosenthal. 2004.
“General State Space Markov Chains and MCMC Algorithms.” Probability Surveys 1 (0): 20–71.
https://doi.org/10.1214/154957804100000024.
Rubinstein, Reuven Y., and Dirk P. Kroese. 2016. Simulation and the Monte Carlo Method. 3 edition. Wiley Series in Probability and Statistics. Hoboken, New Jersey: Wiley.
Rubinstein, Reuven Y., Ad Ridder, and Radislav Vaisman. 2014. Fast Sequential Monte Carlo Methods for Counting and Optimization. Wiley Series in Probability and Statistics. Hoboken, New Jersey: Wiley.
Rubinstein, Reuven Y, and Dirk P Kroese. 2004.
The Cross-Entropy Method a Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning.
New York, NY:
Springer New York.
http://dx.doi.org/10.1007/978-1-4757-4321-0.
Salimans, Tim, Diederik Kingma, and Max Welling. 2015.
“Markov Chain Monte Carlo and Variational Inference: Bridging the Gap.” In
Proceedings of the 32nd International Conference on Machine Learning (ICML-15), 1218–26.
ICML’15.
Lille, France:
JMLR.org.
http://proceedings.mlr.press/v37/salimans15.html.
Schuster, Ingmar, Heiko Strathmann, Brooks Paige, and Dino Sejdinovic. 2017.
“Kernel Sequential Monte Carlo.” In
ECML-PKDD 2017.
http://arxiv.org/abs/1510.03105.
Sisson, S. A., Y. Fan, and Mark M. Tanaka. 2007.
“Sequential Monte Carlo Without Likelihoods.” Proceedings of the National Academy of Sciences 104 (6): 1760–65.
https://doi.org/10.1073/pnas.0607208104.
Syed, Saifuddin, Alexandre Bouchard-Côté, George Deligiannidis, and Arnaud Doucet. 2020.
“Non-Reversible Parallel Tempering: A Scalable Highly Parallel MCMC Scheme.” November 22, 2020.
http://arxiv.org/abs/1905.02939.
Welling, Max, and Yee Whye Teh. n.d. “Bayesian Learning via Stochastic Gradient Langevin Dynamics,” 8.
Xifara, T., C. Sherlock, S. Livingstone, S. Byrne, and M. Girolami. 2014.
“Langevin Diffusions and the Metropolis-Adjusted Langevin Algorithm.” Statistics & Probability Letters 91 (August): 14–19.
https://doi.org/10.1016/j.spl.2014.04.002.
Xu, Kai, Hong Ge, Will Tebbutt, Mohamed Tarek, Martin Trapp, and Zoubin Ghahramani. 2019.
“AdvancedHMC.jl: A Robust, Modular and Efficient Implementation of Advanced HMC Algorithms,” October.
https://openreview.net/forum?id=rJgzckn4tH.
Yoshida, Ryo, and Mike West. 2010.
“Bayesian Learning in Sparse Graphical Factor Models via Variational Mean-Field Annealing.” Journal of Machine Learning Research 11: 1771–98.
http://www.jmlr.org/papers/v11/yoshida10a.html.
No comments yet!