Kleinberg and Raghavan (2021)
Algorithmic monoculture is a growing concern in the use of algorithms for high-stakes screening decisions in areas such as employment and lending. If many firms use the same algorithm, even if it is more accurate than the alternatives, the resulting “monoculture” may be susceptible to correlated failures, much as a monocultural system is in biological settings. To investigate this concern, we develop a model of selection under monoculture. We find that even without any assumption of shocks or correlated failures—i.e., under “normal operations”—the quality of decisions may decrease when multiple firms use the same algorithm. Thus, the introduction of a more accurate algorithm may decrease social welfare—a kind of “Braess’ paradox” for algorithmic decision-making.
No comments yet. Why not leave one?