Sampling and estimation theory for SDEs driven by LΓ©vy noise. which produces a nice inference theory and gives us a machinery for producing prior for Bayesian sensing problems where the signal is known to be non-Gaussian. I have not got much to say about this yet. In particular I should say what βsparseβ implies in this context. π
Related maybe, signatures of rough paths.
References
Amini, Arash, Michael Unser, and Farokh Marvasti. 2011. βCompressibility of Deterministic and Random Infinite Sequences.β IEEE Transactions on Signal Processing 59 (11): 5193β5201.
Bolin, David. 2014. βSpatial MatΓ©rn Fields Driven by Non-Gaussian Noise.β Scandinavian Journal of Statistics 41 (3): 557β79.
Bostan, E., U. S. Kamilov, M. Nilchian, and M. Unser. 2013. βSparse Stochastic Processes and Discretization of Linear Inverse Problems.β IEEE Transactions on Image Processing 22 (7): 2699β2710.
Bruna, Joan, and Stephane Mallat. 2013. βInvariant Scattering Convolution Networks.β IEEE Transactions on Pattern Analysis and Machine Intelligence 35 (8): 1872β86.
βββ. 2019. βMultiscale Sparse Microcanonical Models.β arXiv:1801.02013 [Math-Ph, Stat], May.
Bruna, Joan, StΓ©phane Mallat, Emmanuel Bacry, and Jean-FranΓ§ois Muzy. 2015. βIntermittent Process Analysis with Scattering Moments.β The Annals of Statistics 43 (1): 323β51.
Bruti-Liberati, Nicola, and Eckhard Platen. 2007. βStrong Approximations of Stochastic Differential Equations with Jumps.β Journal of Computational and Applied Mathematics, Special issue on evolutionary problems, 205 (2): 982β1001.
Cheng, Sihao, and Brice MΓ©nard. 2021. βHow to Quantify Fields or Textures? A Guide to the Scattering Transform.β arXiv.
Hanson, Floyd B. 2007. βStochastic Processes and Control for Jump-Diffusions.β SSRN Scholarly Paper ID 1023497. Rochester, NY: Social Science Research Network.
Mallat, StΓ©phane. 2012. βGroup Invariant Scattering.β Communications on Pure and Applied Mathematics 65 (10): 1331β98.
Maravic, I., and M. Vetterli. 2005. βSampling and Reconstruction of Signals with Finite Rate of Innovation in the Presence of Noise.β IEEE Transactions on Signal Processing 53 (8): 2788β2805.
Marziliano, P., M. Vetterli, and T. Blu. 2006. βSampling and Exact Reconstruction of Bandlimited Signals with Additive Shot Noise.β IEEE Transactions on Information Theory 52 (5): 2230β33.
Matheron, G. 1973. βThe Intrinsic Random Functions and Their Applications.β Advances in Applied Probability 5 (3): 439β68.
Meidan, R. 1980. βOn the Connection Between Ordinary and Generalized Stochastic Processes.β Journal of Mathematical Analysis and Applications 76 (1): 124β33.
Oyallon, Edouard, Eugene Belilovsky, and Sergey Zagoruyko. 2017. βScaling the Scattering Transform: Deep Hybrid Networks.β arXiv Preprint arXiv:1703.08961.
Sprechmann, Pablo, Joan Bruna, and Yann LeCun. 2014. βAudio Source Separation with Discriminative Scattering Networks.β arXiv:1412.7022 [Cs], December.
Sun, Qiyu, and Michael Unser. 2012. βLeft-Inverses of Fractional Laplacian and Sparse Stochastic Processes.β Advances in Computational Mathematics 36 (3): 399β441.
Tan, V. Y. F., and V. K. Goyal. 2008. βEstimating Signals With Finite Rate of Innovation From Noisy Samples: A Stochastic Algorithm.β IEEE Transactions on Signal Processing 56 (10): 5135β46.
Unser, M. 2015. βSampling and (Sparse) Stochastic Processes: A Tale of Splines and Innovation.β In 2015 International Conference on Sampling Theory and Applications (SampTA), 221β25.
Unser, Michael A., and Pouya Tafti. 2014. An Introduction to Sparse Stochastic Processes. New York: Cambridge University Press.
Unser, M., P. D. Tafti, A. Amini, and H. Kirshner. 2014. βA Unified Formulation of Gaussian Vs Sparse Stochastic Processes - Part II: Discrete-Domain Theory.β IEEE Transactions on Information Theory 60 (5): 3036β51.
Unser, M., P. D. Tafti, and Q. Sun. 2014. βA Unified Formulation of Gaussian Vs Sparse Stochastic ProcessesβPart I: Continuous-Domain Theory.β IEEE Transactions on Information Theory 60 (3): 1945β62.
Yadrenko, Mikhail Iosifovich. 1983. Spectral theory of random fields. Translation series in mathematics and engineering. New York, NY: Optimization Software.
No comments yet. Why not leave one?