Placeholder, for a useful subcategory of Wiener-Hopf methods.

## References

Anderson, B., K. Hitz, and N. Diem. 1974. “Recursive Algorithm for Spectral Factorization.”

*IEEE Transactions on Circuits and Systems*21 (6): 742–50.Antoulas, Athanasios C., ed. 1991.

*Mathematical System Theory: The Influence of R. E. Kalman*. Berlin, Heidelberg: Springer Berlin Heidelberg.Bart, H., I. Gohberg, and M. A. Kaashoek. 1979.

*Minimal Factorization of Matrix and Operator Functions*. Vol. 1. Operator Theory, Advances and Applications, v. 1. Basel ; Boston: Birkhäuser Verlag.Davis, M. 1963. “Factoring the Spectral Matrix.”

*IEEE Transactions on Automatic Control*8 (4): 296–305.Gohberg, I., and M. A. Kaashoek. 1991. “The State Space Method for Solving Singular Integral Equations.” In

*Mathematical System Theory: The Influence of R. E. Kalman*, edited by Athanasios C. Antoulas, 509–23. Berlin, Heidelberg: Springer.Kucera, V. 1991. “Factorization of Rational Spectral Matrices: A Survey of Methods.” In

*International Conference on Control 1991. Control ’91*, 1074–1078 vol.2.Najafabadi, Amir T. Payandeh, and Dan Z. Kucerovsky. 2015. “A Weak Approximation for the Wiener–Hopf Factorization.” Edited by Kok Lay Teo.

*Cogent Mathematics*2 (1): 1074773.Sayed, A. H., and T. Kailath. 2001. “A Survey of Spectral Factorization Methods.”

*Numerical Linear Algebra with Applications*8 (6-7): 467–96.Wilson, G. Tunnicliffe. 1972. “The Factorization of Matricial Spectral Densities.”

*SIAM Journal on Applied Mathematics*23 (4): 420–26.Youla, D., J. Bongiorno, and H. Jabr. 1976. “Modern Wiener–Hopf Design of Optimal Controllers Part I: The Single-Input-Output Case.”

*IEEE Transactions on Automatic Control*21 (1): 3–13.
## No comments yet. Why not leave one?