Wiener-Hopf method

Righteous hack for certain integral equations



Placeholder.

References

Bacry, Emmanuel, and Jean-François Muzy. 2016. “First- and Second-Order Statistics Characterization of Hawkes Processes and Non-Parametric Estimation.” IEEE Transactions on Information Theory 62 (4, 4): 2184–2202. https://doi.org/10.1109/TIT.2016.2533397.
Crighton, D. G., A. P. Dowling, J. E. Ffowcs Williams, M. Heckl, and F. G. Leppington. 1992. “Wiener-Hopf Technique.” In Modern Methods in Analytical Acoustics: Lecture Notes, edited by D. G. Crighton, A. P. Dowling, J. E. Ffowcs Williams, M. Heckl, and F. G. Leppington, 148–67. London: Springer. https://doi.org/10.1007/978-1-4471-0399-8_5.
Gohberg, I., and M. A. Kaashoek. 1991. “The State Space Method for Solving Singular Integral Equations.” In Mathematical System Theory: The Influence of R. E. Kalman, edited by Athanasios C. Antoulas, 509–23. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-662-08546-2_30.
Hawkes, Alan G. 1971. “Point Spectra of Some Mutually Exciting Point Processes.” Journal of the Royal Statistical Society. Series B (Methodological) 33 (3): 438–43. https://www.researchgate.net/profile/Alan_Hawkes2/publication/266241162_Point_spectra_of_some_mutually_exciting_point_process/links/56bb0ffa08ae0a6bc955f936.pdf.
Kailath, T., R. Geesey, and H. Weinert. 1972. “Some Relations Among RKHS Norms, Fredholm Equations, and Innovations Representations.” IEEE Transactions on Information Theory 18 (3): 341–48. https://doi.org/10.1109/TIT.1972.1054827.
Kailath, Thomas, Ali H. Sayed, and Babak Hassibi. 2000. Linear Estimation. Prentice Hall Information and System Sciences Series. Upper Saddle River, N.J: Prentice Hall.
Kyprianou, Andreas E. 2014. Fluctuations of Lévy Processes with Applications: Introductory Lectures. Second edition. Universitext. Heidelberg: Springer.
Lawrie, Jane B., and I. David Abrahams. 2007. “A Brief Historical Perspective of the WienerHopf Technique.” Journal of Engineering Mathematics 59 (4): 351–58. https://doi.org/10.1007/s10665-007-9195-x.
Najafabadi, Amir T. Payandeh, and Dan Z. Kucerovsky. 2015. “A Weak Approximation for the WienerHopf Factorization.” Edited by Kok Lay Teo. Cogent Mathematics 2 (1): 1074773. https://doi.org/10.1080/23311835.2015.1074773.
Noble, B. 1958. Methods Based on the Wiener-Hopf Technique for the Solution of Partial Differential Equations. First Edition. New York: Pergamon Press.
Parzen, Emanuel. 1962. “Extraction and Detection Problems and Reproducing Kernel Hilbert Spaces.” Journal of the Society for Industrial and Applied Mathematics Series A Control 1 (1): 35–62. https://doi.org/10.1137/0301004.
Polyanin, A. D., and A. V. Manzhirov. 1998. Handbook of Integral Equations. Boca Raton, Fla: CRC Press.
Sayed, A. H., and T. Kailath. 2001. “A Survey of Spectral Factorization Methods.” Numerical Linear Algebra with Applications 8 (6-7): 467–96. https://doi.org/10.1002/nla.250.
Youla, D., J. Bongiorno, and H. Jabr. 1976. “Modern WienerHopf Design of Optimal Controllers Part I: The Single-Input-Output Case.” IEEE Transactions on Automatic Control 21 (1): 3–13. https://doi.org/10.1109/TAC.1976.1101139.

No comments yet. Why not leave one?

GitHub-flavored Markdown & a sane subset of HTML is supported.