Alsup, Terrence, Luca Venturi, and Benjamin Peherstorfer. 2022.
βMultilevel Stein Variational Gradient Descent with Applications to Bayesian Inverse Problems.β In
Proceedings of the 2nd Mathematical and Scientific Machine Learning Conference, 93β117. PMLR.
Ambrogioni, Luca, Umut GΓΌΓ§lΓΌ, Yagmur GΓΌΓ§lΓΌtΓΌrk, Max Hinne, Eric Maris, and Marcel A. J. van Gerven. 2018.
βWasserstein Variational Inference.β In
Proceedings of the 32Nd International Conference on Neural Information Processing Systems, 2478β87. NIPSβ18. USA: Curran Associates Inc.
Anastasiou, Andreas, Alessandro Barp, FranΓ§ois-Xavier Briol, Bruno Ebner, Robert E. Gaunt, Fatemeh Ghaderinezhad, Jackson Gorham, et al. 2022.
βSteinβs Method Meets Computational Statistics: A Review of Some Recent Developments.β arXiv.
Chen, Peng, Keyi Wu, Joshua Chen, Thomas OβLeary-Roseberry, and Omar Ghattas. 2020.
βProjected Stein Variational Newton: A Fast and Scalable Bayesian Inference Method in High Dimensions.β arXiv.
Chwialkowski, Kacper, Heiko Strathmann, and Arthur Gretton. 2016.
βA Kernel Test of Goodness of Fit.β In
Proceedings of the 33rd International Conference on International Conference on Machine Learning - Volume 48, 2606β15. ICMLβ16. New York, NY, USA: JMLR.org.
Detommaso, Gianluca, Tiangang Cui, Alessio Spantini, Youssef Marzouk, and Robert Scheichl. 2018.
βA Stein Variational Newton Method.β In
Proceedings of the 32nd International Conference on Neural Information Processing Systems, 9187β97. NIPSβ18. Red Hook, NY, USA: Curran Associates Inc.
Detommaso, Gianluca, Hanne Hoitzing, Tiangang Cui, and Ardavan Alamir. 2019.
βStein Variational Online Changepoint Detection with Applications to Hawkes Processes and Neural Networks.β arXiv:1901.07987 [Cs, Stat], May.
Gong, Chengyue, Jian Peng, and Qiang Liu. 2019.
βQuantile Stein Variational Gradient Descent for Batch Bayesian Optimization.β In
Proceedings of the 36th International Conference on Machine Learning, 2347β56. PMLR.
Gorham, Jackson, and Lester Mackey. 2015.
βMeasuring Sample Quality with Steinβs Method.β In
Advances in Neural Information Processing Systems. Vol. 28.
Gorham, Jackson, Anant Raj, and Lester Mackey. 2020.
βStochastic Stein Discrepancies.β arXiv:2007.02857 [Cs, Math, Stat], October.
Han, Jun, and Qiang Liu. 2018.
βStein Variational Gradient Descent Without Gradient.β In
Proceedings of the 35th International Conference on Machine Learning, 1900β1908. PMLR.
Huggins, Jonathan H., Trevor Campbell, MikoΕaj Kasprzak, and Tamara Broderick. 2018.
βScalable Gaussian Process Inference with Finite-Data Mean and Variance Guarantees.β arXiv:1806.10234 [Cs, Stat], June.
Ley, Christophe, Gesine Reinert, and Yvik Swan. 2017.
βSteinβs Method for Comparison of Univariate Distributions.β Probability Surveys 14 (none): 1β52.
Liu, Chang, and Jun Zhu. 2018.
βRiemannian Stein Variational Gradient Descent for Bayesian Inference.β Proceedings of the AAAI Conference on Artificial Intelligence 32 (1).
Liu, Qiang, Jason D Lee, and Michael Jordan. 2016.
βA Kernelized Stein Discrepancy for Goodness-of-Fit Tests.β In
Proceedings of The 33rd International Conference on Machine Learning, 9.
Liu, Qiang, and Dilin Wang. 2018.
βStein Variational Gradient Descent as Moment Matching.β In
Proceedings of the 32nd International Conference on Neural Information Processing Systems, 31:8868β77. NIPSβ18. Red Hook, NY, USA: Curran Associates Inc.
Liu, Xing, Harrison Zhu, Jean-Francois Ton, George Wynne, and Andrew Duncan. 2022.
βGrassmann Stein Variational Gradient Descent.β In
Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, 2002β21. PMLR.
Pulido, Manuel, and Peter Jan van Leeuwen. 2019.
βSequential Monte Carlo with Kernel Embedded Mappings: The Mapping Particle Filter.β Journal of Computational Physics 396 (November): 400β415.
Pulido, Manuel, Peter Jan Van Leeuwen, and Derek J. Posselt. 2019.
βKernel Embedded Nonlinear Observational Mappings in the Variational Mapping Particle Filter.β In
Computational Science β ICCS 2019. ICCS 2019. Lecture Notes in Computer Science, edited by Joao M. F. Rodrigues, Pedro J. S. Cardoso, Janio Monteiro, Roberto Lam, Valeria V. Krzhizhanovskaya, Michael H. Lees, Jack J. Dongarra, and Peter M. A. Sloot, 141β55. Faro, Portugal: Springer.
Stordal, Andreas S., Rafael J. Moraes, Patrick N. Raanes, and Geir Evensen. 2021.
βP-Kernel Stein Variational Gradient Descent for Data Assimilation and History Matching.β Mathematical Geosciences 53 (3): 375β93.
Tamang, Sagar K., Ardeshir Ebtehaj, Peter J. van Leeuwen, Dongmian Zou, and Gilad Lerman. 2021.
βEnsemble Riemannian Data Assimilation over the Wasserstein Space.β Nonlinear Processes in Geophysics 28 (3): 295β309.
Wang, Dilin, and Qiang Liu. 2019.
βNonlinear Stein Variational Gradient Descent for Learning Diversified Mixture Models.β In
Proceedings of the 36th International Conference on Machine Learning, 6576β85. PMLR.
Wang, Dilin, Ziang Tang, Chandrajit Bajaj, and Qiang Liu. 2019.
βStein Variational Gradient Descent with Matrix-Valued Kernels.β In
Proceedings of the 33rd International Conference on Neural Information Processing Systems, 7836β46. Red Hook, NY, USA: Curran Associates Inc.
Wang, Ziyu, Tongzheng Ren, Jun Zhu, and Bo Zhang. 2018.
βFunction Space Particle Optimization for Bayesian Neural Networks.β In.
Wen, Linjie, and Jinglai Li. 2022.
βAffine-Mapping Based Variational Ensemble Kalman Filter.β Statistics and Computing 32 (6): 97.
Xu, Wenkai, and Takeru Matsuda. 2021.
βInterpretable Stein Goodness-of-Fit Tests on Riemannian Manifolds.β arXiv:2103.00895 [Stat], March.
Zhang, Jianyi, Ruiyi Zhang, Lawrence Carin, and Changyou Chen. 2020.
βStochastic Particle-Optimization Sampling and the Non-Asymptotic Convergence Theory.β In
International Conference on Artificial Intelligence and Statistics, 1877β87. PMLR.
Zhuo, Jingwei, Chang Liu, Jiaxin Shi, Jun Zhu, Ning Chen, and Bo Zhang. 2018.
βMessage Passing Stein Variational Gradient Descent.β In
Proceedings of the 35th International Conference on Machine Learning, 6018β27. PMLR.
No comments yet. Why not leave one?