Placeholder, for discussing the Taylor expansion equivalent for an SDE.

Let \(f\) denote a smooth function. Then from Itō’s lemma, \[ f\left(X_{t}\right)=f\left(X_{0}\right)+\int_{s=0}^{t} L^{0} f\left(X_{s}\right) d s+\int_{s=0}^{t} L^{1} f\left(X_{s}\right) d B_{s} \] where the operators \(L^{0}\) and \(L^{1}\) are defined by \[ L^{0}=a(x) \frac{\partial}{\partial x}+\frac{1}{2} b(x)^{2} \frac{\partial^{2}}{\partial x^{2}} \quad \text { and } \quad L^{1}=b(x) \frac{\partial}{\partial x} \] We may repeat this procedure arbitrarily many times. Each repetition produces a higher order of Itō-Taylor expansion.

TBD: Relationship to Malliavin calculus and infinitesimal generators, other methods of approximating the distribution of a transformed RV…

## References

*Handbook of Financial Econometrics: Tools and Techniques*, 1–66. Elsevier. https://doi.org/10.1016/B978-0-444-50897-3.50004-3.

*Malaysian Journal of Fundamental and Applied Sciences*13 (3). https://doi.org/10.11113/mjfas.v13n3.633.

*Lévy Processes: Theory and Applications*, edited by Ole E. Barndorff-Nielsen, Sidney I. Resnick, and Thomas Mikosch, 139–68. Boston, MA: Birkhäuser. https://doi.org/10.1007/978-1-4612-0197-7_7.

*Mathematische Nachrichten*151 (1): 33–50. https://doi.org/10.1002/mana.19911510103.

*Stochastic Analysis and Applications*10 (4): 431–41. https://doi.org/10.1080/07362999208809281.

*Numerical Solution of Stochastic Differential Equations*, edited by Peter E. Kloeden and Eckhard Platen, 161–226. Applications of Mathematics. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-662-12616-5_5.

*Numerical Solution of Stochastic Differential Equations*. Berlin, Heidelberg: Springer Berlin Heidelberg. https://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=3099793.

*Stochastic Analysis and Applications*22 (6): 1553–76. https://doi.org/10.1081/SAP-200029495.