Itō-Taylor expansion

Polynomial approximations of small randomnesses

Placeholder, for discussing the Taylor expansion equivalent for an SDE.

Let \(f\) denote a smooth function. Then from Itō’s lemma, \[ f\left(X_{t}\right)=f\left(X_{0}\right)+\int_{s=0}^{t} L^{0} f\left(X_{s}\right) d s+\int_{s=0}^{t} L^{1} f\left(X_{s}\right) d B_{s} \] where the operators \(L^{0}\) and \(L^{1}\) are defined by \[ L^{0}=a(x) \frac{\partial}{\partial x}+\frac{1}{2} b(x)^{2} \frac{\partial^{2}}{\partial x^{2}} \quad \text { and } \quad L^{1}=b(x) \frac{\partial}{\partial x} \] We may repeat this procedure arbitrarily many times. Each repetition produces a higher order of Itō-Taylor expansion.

TBD: Relationship to Malliavin calculus and infinitesimal generators, other methods of approximating the distribution of a transformed RV


Aït-Sahalia, Yacine, Lars Peter Hansen, and José A. Scheinkman. 2010. “Operator Methods for Continuous-Time Markov Processes.” In Handbook of Financial Econometrics: Tools and Techniques, 1–66. Elsevier.
Ariffin, Noor Amalina Nisa, and Norhayati Rosli. 2017. “Stochastic Taylor Expansion of Derivative-Free Method for Stochastic Differential Equations.” Malaysian Journal of Fundamental and Applied Sciences 13 (3).
Jacob, Niels, and René L. Schilling. 2001. “Lévy-Type Processes and Pseudodifferential Operators.” In Lévy Processes: Theory and Applications, edited by Ole E. Barndorff-Nielsen, Sidney I. Resnick, and Thomas Mikosch, 139–68. Boston, MA: Birkhäuser.
Kloeden, P. E., and E. Platen. 1991. “Stratonovich and Ito Stochastic Taylor Expansions.” Mathematische Nachrichten 151 (1): 33–50.
Kloeden, P. E., E. Platen, and I. W. Wright. 1992. “The Approximation of Multiple Stochastic Integrals.” Stochastic Analysis and Applications 10 (4): 431–41.
Kloeden, Peter E., and Eckhard Platen. 1992. “Stochastic Taylor Expansions.” In Numerical Solution of Stochastic Differential Equations, edited by Peter E. Kloeden and Eckhard Platen, 161–226. Applications of Mathematics. Berlin, Heidelberg: Springer.
———. 2010. Numerical Solution of Stochastic Differential Equations. Berlin, Heidelberg: Springer Berlin Heidelberg.
Papapantoleon, Antonis, and Maria Siopacha. 2010. “Strong Taylor Approximation of Stochastic Differential Equations and Application to the Lévy LIBOR Model.” October 4, 2010.
Rößler, Andreas. 2004. “Stochastic Taylor Expansions for the Expectation of Functionals of Diffusion Processes.” Stochastic Analysis and Applications 22 (6): 1553–76.
Schoutens, Wim, K U Leuven, and Michael Studer. 2001. “Stochastic Taylor Expansions for Poisson Processes and Applications Towards Risk Management,” February, 24.

Warning! Experimental comments system! If is does not work for you, let me know via the contact form.

No comments yet!

GitHub-flavored Markdown & a sane subset of HTML is supported.