Burrows, Wesley, and John Doherty. 2015.
“Efficient Calibration/Uncertainty Analysis Using Paired Complex/Surrogate Models.” Groundwater 53 (4): 531–41.
https://doi.org/10.1111/gwat.12257.
Doherty, John. 2015. Calibration and Uncertainty Analysis for Complex Environmental Models.
Gladish, Daniel W., Daniel E. Pagendam, Luk J. M. Peeters, Petra M. Kuhnert, and Jai Vaze. 2018.
“Emulation Engines: Choice and Quantification of Uncertainty for Complex Hydrological Models.” Journal of Agricultural, Biological and Environmental Statistics 23 (1): 39–62.
https://doi.org/10.1007/s13253-017-0308-3.
Gratiet, Loïc Le, Stefano Marelli, and Bruno Sudret. 2016.
“Metamodel-Based Sensitivity Analysis: Polynomial Chaos Expansions and Gaussian Processes.” In
Handbook of Uncertainty Quantification, edited by Roger Ghanem, David Higdon, and Houman Owhadi, 1–37.
Cham:
Springer International Publishing.
https://doi.org/10.1007/978-3-319-11259-6_38-1.
Jarvenpaa, Marko, Aki Vehtari, and Pekka Marttinen. 2020.
“Batch Simulations and Uncertainty Quantification in Gaussian Process Surrogate Approximate Bayesian Computation.” In
Conference on Uncertainty in Artificial Intelligence, 779–88.
PMLR.
http://proceedings.mlr.press/v124/jarvenpaa20a.html.
Kasim, M. F., D. Watson-Parris, L. Deaconu, S. Oliver, P. Hatfield, D. H. Froula, G. Gregori, et al. 2020.
“Up to Two Billion Times Acceleration of Scientific Simulations with Deep Neural Architecture Search.” January 17, 2020.
http://arxiv.org/abs/2001.08055.
Siade, Adam J., Mario Putti, and William W. G. Yeh. 2010.
“Snapshot Selection for Groundwater Model Reduction Using Proper Orthogonal Decomposition.” Water Resources Research 46 (8): W08539.
https://doi.org/10.1029/2009WR008792.
Smith, Leonard A. 2000. “Disentangling Uncertainty and Error: On the Predictability of Nonlinear Systems.” In Nonlinear Dynamics and Statistics.
Stuart, A. M. 2010.
“Inverse Problems: A Bayesian Perspective.” Acta Numerica 19: 451–559.
https://doi.org/10.1017/S0962492910000061.
Tonkin, Matthew, and John Doherty. 2009.
“Calibration-Constrained Monte Carlo Analysis of Highly Parameterized Models Using Subspace Techniques.” Water Resources Research 45 (12).
https://doi.org/10.1029/2007WR006678.
Welter, David E., Jeremy T. White, Randall J. Hunt, and John E. Doherty. 2015.
“Approaches in Highly Parameterized Inversion—PEST++ Version 3, a Parameter ESTimation and Uncertainty Analysis Software Suite Optimized for Large Environmental Models.” USGS Numbered Series 7-C12. Techniques and
Methods.
Reston, VA:
U.S. Geological Survey.
https://doi.org/10.3133/tm7C12.
White, Jeremy T. 2018.
“A Model-Independent Iterative Ensemble Smoother for Efficient History-Matching and Uncertainty Quantification in Very High Dimensions.” Environmental Modelling & Software 109 (November): 191–201.
https://doi.org/10.1016/j.envsoft.2018.06.009.
White, Jeremy T., Michael N. Fienen, and John E. Doherty. 2016a.
pyEMU: A Python Framework for Environmental Model Uncertainty Analysis Version .01.
U.S. Geological Survey.
https://doi.org/10.5066/F75D8Q01.
———. 2016b.
“A Python Framework for Environmental Model Uncertainty Analysis.” Environmental Modelling & Software 85 (November): 217–28.
https://doi.org/10.1016/j.envsoft.2016.08.017.
Zhang, Dongkun, Lu Lu, Ling Guo, and George Em Karniadakis. 2019.
“Quantifying Total Uncertainty in Physics-Informed Neural Networks for Solving Forward and Inverse Stochastic Problems.” Journal of Computational Physics 397 (November): 108850.
https://doi.org/10.1016/j.jcp.2019.07.048.
No comments yet!