Adler, Jonas, and Ozan Γktem. 2018.
βLearned Primal-Dual Reconstruction.β IEEE Transactions on Medical Imaging 37 (6): 1322β32.
Alberti, Giovanni S., Ernesto De Vito, Matti Lassas, Luca Ratti, and Matteo Santacesaria. 2021.
βLearning the Optimal Regularizer for Inverse Problems.β arXiv:2106.06513 [Cs, Math, Stat], June.
Aster, Richard C., Brian Borchers, and Clifford H. Thurber. 2019. Parameter Estimation and Inverse Problems. Third. Elsevier.
Bissantz, Nicolai, Thorsten Hohage, and Axel Munk. 2004.
βConsistency and Rates of Convergence of Nonlinear Tikhonov Regularization with Random Noise.β Inverse Problems 20 (6): 1773β89.
Borcea, Liliana, Vladimir Druskin, and Leonid Knizhnerman. 2005.
βOn the Continuum Limit of a Discrete Inverse Spectral Problem on Optimal Finite Difference Grids.β Communications on Pure and Applied Mathematics 58 (9): 1231β79.
Borgerding, Mark, and Philip Schniter. 2016.
βOnsager-Corrected Deep Networks for Sparse Linear Inverse Problems.β arXiv:1612.01183 [Cs, Math], December.
Brehmer, Johann, Gilles Louppe, Juan Pavez, and Kyle Cranmer. 2020.
βMining Gold from Implicit Models to Improve Likelihood-Free Inference.β Proceedings of the National Academy of Sciences 117 (10): 5242β49.
Cranmer, Kyle, Johann Brehmer, and Gilles Louppe. 2020.
βThe Frontier of Simulation-Based Inference.β Proceedings of the National Academy of Sciences, May.
Daubechies, I., M. Defrise, and C. De Mol. 2004.
βAn Iterative Thresholding Algorithm for Linear Inverse Problems with a Sparsity Constraint.β Communications on Pure and Applied Mathematics 57 (11): 1413β57.
Engl, Heinz W., Andreas Hofinger, and Stefan Kindermann. 2005.
βConvergence Rates in the Prokhorov Metric for Assessing Uncertainty in Ill-Posed Problems.β Inverse Problems 21 (1): 399β412.
Engl, Heinz W., and M. Zuhair Nashed. 1981.
βGeneralized Inverses of Random Linear Operators in Banach Spaces.β Journal of Mathematical Analysis and Applications 83 (2): 582β610.
FernΓ‘ndez-MartΓnez, J. L., Z. FernΓ‘ndez-MuΓ±iz, J. L. G. Pallero, and L. M. Pedruelo-GonzΓ‘lez. 2013.
βFrom Bayes to Tarantola: New Insights to Understand Uncertainty in Inverse Problems.β Journal of Applied Geophysics 98 (November): 62β72.
Grigorievskiy, Alexander, Neil Lawrence, and Simo SΓ€rkkΓ€. 2017.
βParallelizable Sparse Inverse Formulation Gaussian Processes (SpInGP).β In
arXiv:1610.08035 [Stat].
Holl, Philipp, Vladlen Koltun, and Nils Thuerey. 2022.
βScale-Invariant Learning by Physics Inversion.β In.
Kaipio, Jari, and E. Somersalo. 2005.
Statistical and Computational Inverse Problems. Applied Mathematical Sciences. New York: Springer-Verlag.
Kaipio, Jari, and Erkki Somersalo. 2007.
βStatistical Inverse Problems: Discretization, Model Reduction and Inverse Crimes.β Journal of Computational and Applied Mathematics 198 (2): 493β504.
Lehtinen, M. S., L. Paivarinta, and E. Somersalo. 1989.
βLinear Inverse Problems for Generalised Random Variables.β Inverse Problems 5 (4): 599β612.
Mandelbaum, Avi. 1984.
βLinear Estimators and Measurable Linear Transformations on a Hilbert Space.β Zeitschrift FΓΌr Wahrscheinlichkeitstheorie Und Verwandte Gebiete 65 (3): 385β97.
Mosegaard, Klaus, and Albert Tarantola. 1995.
βMonte Carlo Sampling of Solutions to Inverse Problems.β Journal of Geophysical Research: Solid Earth 100 (B7): 12431β47.
βββ. 2002.
βProbabilistic Approach to Inverse Problems.β In
International Geophysics, 81:237β65. Elsevier.
Murray-Smith, Roderick, and Barak A. Pearlmutter. 2005.
βTransformations of Gaussian Process Priors.β In
Deterministic and Statistical Methods in Machine Learning, edited by Joab Winkler, Mahesan Niranjan, and Neil Lawrence, 110β23. Lecture Notes in Computer Science. Springer Berlin Heidelberg.
OβCallaghan, Simon Timothy, and Fabio T. Ramos. 2011.
βContinuous Occupancy Mapping with Integral Kernels.β In
Twenty-Fifth AAAI Conference on Artificial Intelligence.
OβSullivan, Finbarr. 1986.
βA Statistical Perspective on Ill-Posed Inverse Problems.β Statistical Science 1 (4): 502β18.
Plumlee, Matthew. 2017.
βBayesian Calibration of Inexact Computer Models.β Journal of the American Statistical Association 112 (519): 1274β85.
Putzky, Patrick, and Max Welling. 2017.
βRecurrent Inference Machines for Solving Inverse Problems.β arXiv:1706.04008 [Cs], June.
Schnell, Patrick, Philipp Holl, and Nils Thuerey. 2022.
βHalf-Inverse Gradients for Physical Deep Learning.β arXiv:2203.10131 [Physics], March.
Schwab, C., and A. M. Stuart. 2012.
βSparse Deterministic Approximation of Bayesian Inverse Problems.β Inverse Problems 28 (4): 045003.
Stuart, Andrew M. 2010.
βInverse Problems: A Bayesian Perspective.β Acta Numerica 19: 451β559.
Tait, Daniel J., and Theodoros Damoulas. 2020.
βVariational Autoencoding of PDE Inverse Problems.β arXiv:2006.15641 [Cs, Stat], June.
Tarantola, Albert. 2005. Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM.
Tonolini, Francesco, Jack Radford, Alex Turpin, Daniele Faccio, and Roderick Murray-Smith. 2020.
βVariational Inference for Computational Imaging Inverse Problems.β Journal of Machine Learning Research 21 (179): 1β46.
Tropp, J. A., and S. J. Wright. 2010.
βComputational Methods for Sparse Solution of Linear Inverse Problems.β Proceedings of the IEEE 98 (6): 948β58.
Wei, Qi, Kai Fan, Lawrence Carin, and Katherine A. Heller. 2017.
βAn Inner-Loop Free Solution to Inverse Problems Using Deep Neural Networks.β arXiv:1709.01841 [Cs], September.
Welter, David E., John E. Doherty, Randall J. Hunt, Christopher T. Muffels, Matthew J. Tonkin, and Willem A. SchreΓΌder. 2012.
βApproaches in Highly Parameterized Inversion: PEST++, a Parameter Estimation Code Optimized for Large Environmental Models.βWelter, David E., Jeremy T. White, Randall J. Hunt, and John E. Doherty. 2015.
βApproaches in Highly Parameterized InversionβPEST++ Version 3, a Parameter ESTimation and Uncertainty Analysis Software Suite Optimized for Large Environmental Models.β USGS Numbered Series 7-C12. Techniques and Methods. Reston, VA: U.S. Geological Survey.
White, Jeremy T., Michael N. Fienen, and John E. Doherty. 2016a.
βpyEMU: A Python Framework for Environmental Model Uncertainty Analysis Version .01.β U.S. Geological Survey.
βββ. 2016b.
βA Python Framework for Environmental Model Uncertainty Analysis.β Environmental Modelling & Software 85 (November): 217β28.
Zammit-Mangion, Andrew, Michael Bertolacci, Jenny Fisher, Ann Stavert, Matthew L. Rigby, Yi Cao, and Noel Cressie. 2021.
βWOMBAT v1.0: A fully Bayesian global flux-inversion framework.β Geoscientific Model Development Discussions, July, 1β51.
Zhang, Dongkun, Lu Lu, Ling Guo, and George Em Karniadakis. 2019.
βQuantifying Total Uncertainty in Physics-Informed Neural Networks for Solving Forward and Inverse Stochastic Problems.β Journal of Computational Physics 397 (November): 108850.
No comments yet. Why not leave one?