Bengio, Yoshua. 2009.
Learning Deep Architectures for AI. Vol. 2.
https://doi.org/10.1561/2200000006.
Castellani, Tommaso, and Andrea Cavagna. 2005.
“Spin-Glass Theory for Pedestrians.” Journal of Statistical Mechanics: Theory and Experiment 2005 (05): P05012.
https://doi.org/10.1088/1742-5468/2005/05/P05012.
Frey, B. J., and Nebojsa Jojic. 2005.
“A Comparison of Algorithms for Inference and Learning in Probabilistic Graphical Models.” IEEE Transactions on Pattern Analysis and Machine Intelligence 27 (9): 1392–1416.
https://doi.org/10.1109/TPAMI.2005.169.
Friston, Karl. 2010.
“The Free-Energy Principle: A Unified Brain Theory?” Nature Reviews Neuroscience 11 (2): 127.
https://doi.org/10.1038/nrn2787.
———. 2013.
“Life as We Know It.” Journal of The Royal Society Interface 10 (86).
https://doi.org/10.1098/rsif.2013.0475.
Geirhos, Robert, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, Matthias Bethge, and Felix A. Wichmann. 2020.
“Shortcut Learning in Deep Neural Networks.” April 16, 2020.
http://arxiv.org/abs/2004.07780.
Jordan, Michael I., Zoubin Ghahramani, Tommi S. Jaakkola, and Lawrence K. Saul. 1999.
“An Introduction to Variational Methods for Graphical Models.” Machine Learning 37 (2): 183–233.
https://doi.org/10.1023/A:1007665907178.
Jordan, Michael I., and Yair Weiss. 2002.
“Probabilistic Inference in Graphical Models.” Handbook of Neural Networks and Brain Theory.
http://mlg.eng.cam.ac.uk/zoubin/course03/hbtnn2e-I.pdf.
LeCun, Yann, Sumit Chopra, Raia Hadsell, M. Ranzato, and F. Huang. 2006.
“A Tutorial on Energy-Based Learning.” Predicting Structured Data.
http://classes.soe.ucsc.edu/cmps290c/Spring12/lect/9/energytut.pdf.
Millidge, Beren, Alexander Tschantz, and Christopher L. Buckley. 2020.
“Whence the Expected Free Energy?” September 28, 2020.
http://arxiv.org/abs/2004.08128.
Montanari, Andrea. 2011.
“Lecture Notes for Stat 375 Inference in Graphical Models.” http://www.stanford.edu/~montanar/TEACHING/Stat375/handouts/notes_stat375_1.pdf.
Wainwright, Martin J., and Michael I. Jordan. 2008.
Graphical Models, Exponential Families, and Variational Inference. Vol. 1. Foundations and
Trends® in
Machine Learning.
Now Publishers.
https://doi.org/10.1561/2200000001.
Wainwright, Martin, and Michael I Jordan. 2005. “A Variational Principle for Graphical Models.” In New Directions in Statistical Signal Processing. Vol. 155. MIT Press.
Wang, Chaohui, Nikos Komodakis, and Nikos Paragios. 2013.
“Markov Random Field Modeling, Inference & Learning in Computer Vision & Image Understanding: A Survey.” Computer Vision and Image Understanding 117 (11): 1610–27.
https://doi.org/10.1016/j.cviu.2013.07.004.
Williams, Daniel. 2020.
“Predictive Coding and Thought.” Synthese 197 (4): 1749–75.
https://doi.org/10.1007/s11229-018-1768-x.
Xing, Eric P., Michael I. Jordan, and Stuart Russell. 2003.
“A Generalized Mean Field Algorithm for Variational Inference in Exponential Families.” In
Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence, 583–91.
UAI’03.
San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc. http://arxiv.org/abs/1212.2512.
Yedidia, J. S., W. T. Freeman, and Y. Weiss. 2003.
“Understanding Belief Propagation and Its Generalizations.” In
Exploring Artificial Intelligence in the New Millennium, edited by G. Lakemeyer and B. Nebel, 239–36.
Morgan Kaufmann Publishers.
http://www.merl.com/publications/TR2001-22.
Yedidia, Jonathan S., W. T. Freeman, and Y. Weiss. 2005.
“Constructing Free-Energy Approximations and Generalized Belief Propagation Algorithms.” IEEE Transactions on Information Theory 51 (7): 2282–312.
https://doi.org/10.1109/TIT.2005.850085.
No comments yet!