Arjovsky, Martin, Soumith Chintala, and LΓ©on Bottou. 2017.
βWasserstein Generative Adversarial Networks.β In
International Conference on Machine Learning, 214β23.
Arora, Sanjeev, Rong Ge, Yingyu Liang, Tengyu Ma, and Yi Zhang. 2017.
βGeneralization and Equilibrium in Generative Adversarial Nets (GANs).β arXiv:1703.00573 [Cs], March.
Bahadori, Mohammad Taha, Krzysztof Chalupka, Edward Choi, Robert Chen, Walter F. Stewart, and Jimeng Sun. 2017.
βNeural Causal Regularization Under the Independence of Mechanisms Assumption.β arXiv:1702.02604 [Cs, Stat], February.
Bao, Gang, Xiaojing Ye, Yaohua Zang, and Haomin Zhou. 2020.
βNumerical Solution of Inverse Problems by Weak Adversarial Networks.β Inverse Problems 36 (11): 115003.
Blaauw, Merlijn, and Jordi Bonada. 2017.
βA Neural Parametric Singing Synthesizer.β arXiv:1704.03809 [Cs], April.
Bora, Ashish, Ajil Jalal, Eric Price, and Alexandros G. Dimakis. 2017.
βCompressed Sensing Using Generative Models.β In
International Conference on Machine Learning, 537β46.
Bowman, Samuel R., Luke Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal Jozefowicz, and Samy Bengio. 2015.
βGenerating Sentences from a Continuous Space.β arXiv:1511.06349 [Cs], November.
Che, Tong, Ruixiang Zhang, Jascha Sohl-Dickstein, Hugo Larochelle, Liam Paull, Yuan Cao, and Yoshua Bengio. 2020.
βYour GAN Is Secretly an Energy-Based Model and You Should Use Discriminator Driven Latent Sampling.β arXiv:2003.06060 [Cs, Stat], March.
Chen, Xi, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. 2016.
βInfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets.β In
Advances in Neural Information Processing Systems 29, edited by D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, R. Garnett, and R. Garnett, 2172β80. Curran Associates, Inc.
Chu, Mengyu, Nils Thuerey, Hans-Peter Seidel, Christian Theobalt, and Rhaleb Zayer. 2021.
βLearning Meaningful Controls for Fluids.β ACM Transactions on Graphics 40 (4): 1β13.
Denton, Emily, Soumith Chintala, Arthur Szlam, and Rob Fergus. 2015.
βDeep Generative Image Models Using a Laplacian Pyramid of Adversarial Networks.β arXiv:1506.05751 [Cs], June.
Donahue, Chris, Julian McAuley, and Miller Puckette. 2019.
βAdversarial Audio Synthesis.β In
ICLR 2019.
Dosovitskiy, Alexey, Jost Tobias Springenberg, Maxim Tatarchenko, and Thomas Brox. 2014.
βLearning to Generate Chairs, Tables and Cars with Convolutional Networks.β arXiv:1411.5928 [Cs], November.
Dziugaite, Gintare Karolina, Daniel M. Roy, and Zoubin Ghahramani. 2015.
βTraining Generative Neural Networks via Maximum Mean Discrepancy Optimization.β In
Proceedings of the Thirty-First Conference on Uncertainty in Artificial Intelligence, 258β67. UAIβ15. Arlington, Virginia, United States: AUAI Press.
Engel, Jesse, Cinjon Resnick, Adam Roberts, Sander Dieleman, Douglas Eck, Karen Simonyan, and Mohammad Norouzi. 2017.
βNeural Audio Synthesis of Musical Notes with WaveNet Autoencoders.β In
PMLR.
Fraccaro, Marco, SΓΈ ren Kaae SΓΈ nderby, Ulrich Paquet, and Ole Winther. 2016.
βSequential Neural Models with Stochastic Layers.β In
Advances in Neural Information Processing Systems 29, edited by D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, 2199β2207. Curran Associates, Inc.
FrΓΌhstΓΌck, Anna, Ibraheem Alhashim, and Peter Wonka. 2019.
βTileGAN: Synthesis of Large-Scale Non-Homogeneous Textures.β arXiv:1904.12795 [Cs], April.
Gal, Yarin, and Zoubin Ghahramani. 2015. βOn Modern Deep Learning and Variational Inference.β In Advances in Approximate Bayesian Inference Workshop, NIPS.
βββ. 2016.
βBayesian Convolutional Neural Networks with Bernoulli Approximate Variational Inference.β In
4th International Conference on Learning Representations (ICLR) Workshop Track.
Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. 2014.
βExplaining and Harnessing Adversarial Examples.β arXiv:1412.6572 [Cs, Stat], December.
Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014.
βGenerative Adversarial Nets.β In
Advances in Neural Information Processing Systems 27, edited by Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, 2672β80. NIPSβ14. Cambridge, MA, USA: Curran Associates, Inc.
Gregor, Karol, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra. 2015.
βDRAW: A Recurrent Neural Network For Image Generation.β arXiv:1502.04623 [Cs], February.
Gulrajani, Ishaan, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville. 2017.
βImproved Training of Wasserstein GANs.β arXiv:1704.00028 [Cs, Stat], March.
He, Kun, Yan Wang, and John Hopcroft. 2016.
βA Powerful Generative Model Using Random Weights for the Deep Image Representation.β In
Advances in Neural Information Processing Systems.
Hinton, Geoffrey E. 2007.
βLearning Multiple Layers of Representation.β Trends in Cognitive Sciences 11 (10): 428β34.
Husain, Hisham, Richard Nock, and Robert C. Williamson. 2019.
βA Primal-Dual Link Between GANs and Autoencoders.β In
Advances in Neural Information Processing Systems, 32:415β24.
Isola, Phillip, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. 2017.
βImage-to-Image Translation with Conditional Adversarial Networks.β In
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 5967β76.
Jetchev, Nikolay, Urs Bergmann, and Roland Vollgraf. 2016.
βTexture Synthesis with Spatial Generative Adversarial Networks.β In
Advances in Neural Information Processing Systems 29.
Kidger, Patrick, James Foster, Xuechen Li, and Terry J. Lyons. 2021.
βNeural SDEs as Infinite-Dimensional GANs.β In
Proceedings of the 38th International Conference on Machine Learning, 5453β63. PMLR.
Kodali, Naveen, Jacob Abernethy, James Hays, and Zsolt Kira. 2017.
βOn Convergence and Stability of GANs.β arXiv:1705.07215 [Cs], December.
Krishnan, Rahul G., Uri Shalit, and David Sontag. 2017.
βStructured Inference Networks for Nonlinear State Space Models.β In
Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, 2101β9.
Kulkarni, Tejas D., Will Whitney, Pushmeet Kohli, and Joshua B. Tenenbaum. 2015.
βDeep Convolutional Inverse Graphics Network.β arXiv:1503.03167 [Cs], March.
Lee, Honglak, Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng. 2009.
βConvolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations.β In
Proceedings of the 26th Annual International Conference on Machine Learning, 609β16. ICML β09. New York, NY, USA: ACM.
Li, Chun-Liang, Wei-Cheng Chang, Yu Cheng, Yiming Yang, and Barnabas Poczos. 2017.
βMMD GAN: Towards Deeper Understanding of Moment Matching Network.β In
Advances in Neural Information Processing Systems 30, edited by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, 2203β13. Curran Associates, Inc.
Louizos, Christos, and Max Welling. 2016.
βStructured and Efficient Variational Deep Learning with Matrix Gaussian Posteriors.β In
arXiv Preprint arXiv:1603.04733, 1708β16.
Mirza, Mehdi, and Simon Osindero. 2014.
βConditional Generative Adversarial Nets.β arXiv:1411.1784 [Cs, Stat], November.
Miyato, Takeru, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. 2018.
βSpectral Normalization for Generative Adversarial Networks.β In
ICLR 2018.
Miyato, Takeru, and Masanori Koyama. 2018.
βcGANs with Projection Discriminator.β In.
Mnih, Andriy, and Karol Gregor. 2014.
βNeural Variational Inference and Learning in Belief Networks.β In
Proceedings of The 31st International Conference on Machine Learning.
Mohamed, A. r, G. E. Dahl, and G. Hinton. 2012.
βAcoustic Modeling Using Deep Belief Networks.β IEEE Transactions on Audio, Speech, and Language Processing 20 (1): 14β22.
Oord, AΓ€ron van den, Nal Kalchbrenner, and Koray Kavukcuoglu. 2016.
βPixel Recurrent Neural Networks.β arXiv:1601.06759 [Cs], January.
Panaretos, Victor M., and Yoav Zemel. 2019.
βStatistical Aspects of Wasserstein Distances.β Annual Review of Statistics and Its Application 6 (1): 405β31.
Pascual, Santiago, Joan SerrΓ , and Antonio Bonafonte. 2019.
βTowards Generalized Speech Enhancement with Generative Adversarial Networks.β arXiv:1904.03418 [Cs, Eess], April.
Pfau, David, and Oriol Vinyals. 2016.
βConnecting Generative Adversarial Networks and Actor-Critic Methods.β arXiv:1610.01945 [Cs, Stat], October.
Poole, Ben, Alexander A. Alemi, Jascha Sohl-Dickstein, and Anelia Angelova. 2016.
βImproved Generator Objectives for GANs.β In
Advances in Neural Information Processing Systems 29.
Qin, Chongli, Yan Wu, Jost Tobias Springenberg, Andy Brock, Jeff Donahue, Timothy Lillicrap, and Pushmeet Kohli. 2020.
βTraining Generative Adversarial Networks by Solving Ordinary Differential Equations.β In
Advances in Neural Information Processing Systems. Vol. 33.
Rezende, Danilo Jimenez, Shakir Mohamed, and Daan Wierstra. 2015.
βStochastic Backpropagation and Approximate Inference in Deep Generative Models.β In
Proceedings of ICML.
Salakhutdinov, Ruslan. 2015.
βLearning Deep Generative Models.β Annual Review of Statistics and Its Application 2 (1): 361β85.
Sun, Zheng, Jiaqi Liu, Zewang Zhang, Jingwen Chen, Zhao Huo, Ching Hua Lee, and Xiao Zhang. 2016.
βComposing Music with Grammar Argumented Neural Networks and Note-Level Encoding.β arXiv:1611.05416 [Cs], November.
Sutherland, Dougal J., Hsiao-Yu Tung, Heiko Strathmann, Soumyajit De, Aaditya Ramdas, Alex Smola, and Arthur Gretton. 2017.
βGenerative Models and Model Criticism via Optimized Maximum Mean Discrepancy.β In
Proceedings of ICLR.
Theis, Lucas, and Matthias Bethge. 2015.
βGenerative Image Modeling Using Spatial LSTMs.β arXiv:1506.03478 [Cs, Stat], June.
Tran, Dustin, Matthew D. Hoffman, Rif A. Saurous, Eugene Brevdo, Kevin Murphy, and David M. Blei. 2017.
βDeep Probabilistic Programming.β In
ICLR.
Wang, Chuang, Hong Hu, and Yue M. Lu. 2019.
βA Solvable High-Dimensional Model of GAN.β arXiv:1805.08349 [Cond-Mat, Stat], October.
Wu, Yan, Mihaela Rosca, and Timothy Lillicrap. 2019.
βDeep Compressed Sensing.β In
International Conference on Machine Learning, 6850β60.
Yang, Li-Chia, Szu-Yu Chou, and Yi-Hsuan Yang. 2017.
βMidiNet: A Convolutional Generative Adversarial Network for Symbolic-Domain Music Generation.β In
Proceedings of the 18th International Society for Music Information Retrieval Conference (ISMIRβ2017), Suzhou, China.
Zang, Yaohua, Gang Bao, Xiaojing Ye, and Haomin Zhou. 2020.
βWeak Adversarial Networks for High-Dimensional Partial Differential Equations.β Journal of Computational Physics 411 (June): 109409.
Zeng, Qi, Spencer H. Bryngelson, and Florian SchΓ€fer. 2022.
βCompetitive Physics Informed Networks.β arXiv.
Zhu, B., J. Jiao, and D. Tse. 2020.
βDeconstructing Generative Adversarial Networks.β IEEE Transactions on Information Theory 66 (11): 7155β79.
Zhu, Jun-Yan, Philipp KrΓ€henbΓΌhl, Eli Shechtman, and Alexei A. Efros. 2016.
βGenerative Visual Manipulation on the Natural Image Manifold.β In
Proceedings of European Conference on Computer Vision.
Zhu, Jun-Yan, Taesung Park, Phillip Isola, and Alexei A. Efros. 2017.
βUnpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks.β In, 2223β32.
No comments yet. Why not leave one?